Skip to main content
Log in

Fredholm Homotopies for Strongly-Disordered 2D Insulators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study topological indices of Fermionic time-reversal invariant topological insulators in two dimensions, in the regime of strong Anderson localization. We devise a method to interpolate between certain Fredholm operators arising in the context of these systems. We use this technique to prove the bulk-edge correspondence for mobility-gapped 2D topological insulators possessing a (Fermionic) time-reversal symmetry (class AII) and provide an alternative route to a theorem by Elgart-Graf-Schenker (Commun Math Phys 259(1):185–221, 2005) about the bulk-edge correspondence for strongly-disordered integer quantum Hall systems. We furthermore provide a proof of the stability of the \(\mathbb {Z}_2\) index in the mobility gap regime. These two-dimensional results serve as a model for the study of higher dimensional \(\mathbb {Z}_2\) indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Asch, J., Bourget, O., Joye, A.: On stable quantum currents. J. Math. Phys. 61(9), 092104 (2020)

    Article  ADS  MATH  Google Scholar 

  2. Abrahams, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)

    Article  ADS  Google Scholar 

  3. Aizenman, M., Graf, G.M.: Localization bounds for an electron gas. J. Phys. A Math. Gen. 31, 6783–6806 (1998)

    Article  ADS  MATH  Google Scholar 

  4. Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint fredholm operators. Publications Mathématiques de l’Institut des Hautes Études Scientifiques. 37(1), 5–26 (1969)

    Article  MATH  Google Scholar 

  5. Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)

    Article  MATH  Google Scholar 

  6. Avron, J.E., Seiler, R., Simon, B.: Charge deficiency, charge transport and comparison of dimensions. Commun. Math. Phys. 159(2), 399–422 (1994)

    Article  ADS  MATH  Google Scholar 

  7. Aizenman, M., Warzel, S.: Random operators. Am. Math. Soc. 2, 889 (2015)

    MATH  Google Scholar 

  8. Booss, B., Bleecker, D.: Topology and Analysis: The Atiyah-Singer Index Formula and Gauge-Theoretic Physics. Springer, Cham (1989)

    MATH  Google Scholar 

  9. Bols, A., Cedzich, C.: Absolutely continuous edge spectrum of topological insulators with an odd time-reversal symmetry. (2022). https://doi.org/10.48550/ARXIV.2203.05474

  10. Bourne, C., Carey, A.L., Rennie, A.: A non-commutative framework for topological insulators. Rev. Math. Phys. 28(02), 1650004 (2016)

    Article  MATH  Google Scholar 

  11. Bernevig, B.A., Hughes, T.L., Zhang, S.-C.: Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314(5806), 1757–1761 (2006). https://doi.org/10.1126/science.1133734

    Article  ADS  Google Scholar 

  12. Bourne, C., Kellendonk, J., Rennie, A.: The K-theoretic bulk-edge correspondence for topological insulators. Ann. Henri Poincaré 18(5), 1833–1866 (2017)

    Article  ADS  MATH  Google Scholar 

  13. Bievre, S.D., Pule, J.V.: Propagating edge states for a magnetic Hamiltonian. Math. Phys. Electron. J. 7, 39–55 (2013). https://doi.org/10.1142/9789812777874_0003

    Article  MATH  Google Scholar 

  14. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35, 5373–5451 (1994)

    Article  ADS  MATH  Google Scholar 

  15. Bols, A., Werner, A. H.: Absolutely Continuous Edge Spectrum of Hall Insulators on the Lattice. (2021). arXiv: 2101.08603 [math-ph]

  16. Du, L., Knez, I., Sullivan, G., Du, R.-R.: Robust helical edge transport in gated InAs/GaSb bilayers. Phys. Rev. Lett. 114, 096802 (2015)

    Article  ADS  Google Scholar 

  17. Elbau, P., Graf, G.M.: Equality of bulk and edge Hall conductance revisited. Commun. Math. Phys. 229(3), 415–432 (2002)

    Article  ADS  MATH  Google Scholar 

  18. Elgart, A., Graf, G.M., Schenker, J.: Equality of the bulk and edge Hall conductances in a mobility gap. Commun. Math. Phys. 259(1), 185–221 (2005)

    Article  ADS  MATH  Google Scholar 

  19. Evers, F., Mirlin, A.D.: Anderson transitions. Rev. Mod. Phys. 80, 1355–1417 (2008)

    Article  ADS  Google Scholar 

  20. Elgart, A., Shamis, M., Sodin, S.: Localisation for non-monotone Schrödinger operators. J. Eur. Math. Soc. 16(5), 909–924 (2014)

    Article  MATH  Google Scholar 

  21. Fröhlich, J., Graf, G.M., Walcher, J.: On the extended nature of edge states of quantum Hall Hamiltonians. Ann. Henri Poincaré 1(3), 405–442 (2000)

    Article  ADS  MATH  Google Scholar 

  22. Fu, L., Kane, C.L.: Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007)

    Article  ADS  Google Scholar 

  23. Fonseca, E., Shapiro, J., Sheta, A., Wang, A., Yamakawa, K.: Two-dimensional time- reversal-invariant topological insulators via Fredholm theory. Math. Phys. Anal. Geom. 23(3), 29 (2020)

    Article  MATH  Google Scholar 

  24. Germinet, F., Klein, A., Schenker, J.: Dynamical delocalization in random Landau Hamiltonians. Ann. Math. 166, 215–244 (2007)

    Article  MATH  Google Scholar 

  25. Graf, G.M.: Aspects of the Integer Quantum Hall Effect. In: Gesztesy, F., Deift, P., Galvez, C., Perry, P., and Schlag, W (eds.) Spectral Theory and Mathematical Physics, p. 429 (2007)

  26. Großmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343(2), 477–513 (2016)

    Article  ADS  MATH  Google Scholar 

  27. Graf, G.M., Shapiro, J.: The bulk-edge correspondence for disordered chiral chains. Commun. Math. Phys. 363, 7789 (2018)

    Article  MATH  Google Scholar 

  28. Hasan, M.Z., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  ADS  Google Scholar 

  29. Kellendonk, J.: On the C-star-algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18(7), 2251–2300 (2017)

    Article  ADS  MATH  Google Scholar 

  30. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321(3), 48–63 (2006)

    MATH  Google Scholar 

  31. Katsura, H., Koma, T.: The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors. J. Math. Phys. 59(3), 031903 (2018)

    Article  ADS  MATH  Google Scholar 

  32. König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L.W., Qi, X.-L., Zhang, S.-C.: Quantum Spin Hall insulator state in HgTe quantum wells. Science 318(5851), 766–770 (2007)

    Article  ADS  Google Scholar 

  33. Loomis, L.H.: A note on the Hilbert transform. Bull. Am. Math. Soc. 52(12), 1082–1086 (1946)

    Article  MATH  Google Scholar 

  34. Mani, A., Benjamin, C.: Are quantum spin Hall edge modes more resilient to disorder, sample geometry and inelastic scattering than quantum Hall edge modes? J. Phys. Condens. Matter 28(14), 145303 (2016)

    Article  ADS  Google Scholar 

  35. Nathan, F., Rudner, M.S., Lindner, N.H., Berg, E., Refael, G.: Quantized magnetization density in periodically driven systems. Phys. Rev. Lett. 119, 186801 (2017)

    Article  ADS  Google Scholar 

  36. Nittis, G.D., Drabkin, M., Schulz-Baldes, H.: Localization and Chern numbers for wewakly disordered BdG operators. Markov Process. Relat. Fields. 21(5), 463–482 (2015)

    Google Scholar 

  37. Orth, C.P., Sekera, T., Bruder, C., Schmidt, T.L.: The topological Anderson insulator phase in the Kane-Mele model. Sci. Rep. 6(1), 24007 (2016)

    Article  ADS  Google Scholar 

  38. del Rio, R., Jitomirskaya, S., Last, Y., Simon, B.: Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization. Journal d’Analyse Mathématique. 69(1), 153–200 (1996)

    Article  MATH  Google Scholar 

  39. Schulz-Baldes, H.: Z2 indices and factorization properties of odd symmetric Fredholm operators. Doc. Math. 20, 1500 (2015)

    Article  MATH  Google Scholar 

  40. Shapiro, J.: The topology of mobility-gapped insulators. Lett. Math. Phys. 110(10), 2703–2723 (2020)

    Article  ADS  MATH  Google Scholar 

  41. Shapiro, J.: Incomplete Localization for Disordered Chiral Strips. (2021). https://doi.org/10.48550/ARXIV.2108.10978

  42. Siroki, G., Haynes, P.D., Lee, D.K.K., Giannini, V.: Protection of surface states in topological nanoparticles. Phys. Rev. Mater. 1, 024201 (2017)

    Article  Google Scholar 

  43. Schulz-Baldes, H., Kellendonk, J., Richter, T.: Simultaneous quantization of edge and bulk Hall conductivity. J. Phys. A Math. Gen. 33(2), L27 (2000)

    Article  ADS  MATH  Google Scholar 

  44. Shapiro, J., Tauber, C.: Strongly Disordered Floquet Topological Systems. Ann. Henri Poincaré 20(6), 1837–1875 (2019)

    Article  ADS  MATH  Google Scholar 

  45. Shapiro, J., Weinstein, M.I.: Tight-binding reduction and topological equivalence in strong magnetic fields. Adv. Math. 403, 108343 (2022)

    Article  MATH  Google Scholar 

  46. Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17(4), 757–794 (2016)

    Article  ADS  MATH  Google Scholar 

  47. Xu, C., Moore, J.E.: Stability of the quantum spin Hall effect: effects of interactions, disorder, and Z2 topology. Phys. Rev. B 73, 045322 (2006)

    Article  ADS  Google Scholar 

  48. Yamakage, A., Nomura, K., Imura, K.-I., Kuramoto, Y.: Disorder-induced multiple transition involving Z2 topological insulator. J. Phys. Soc. Jpn. 80(5), 053703 (2011)

    Article  ADS  Google Scholar 

  49. Zhang, S.-B., Zhang, Y.-Y., Shen, S.-Q.: Robustness of quantum spin Hall effect in an external magnetic field. Phys. Rev. B 90, 115305 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We wish to thank Gian Michele Graf and Martin Zirnbauer for useful discussions. Work on this project was supported in parts by the following grants: A. Bols was supported by the Villium Fonden through the QMATH Centre of Excellence, grant no. 10059. J. Schenker was supported by the U.S. National Science Foundation under Grant No. (1900015). J. Shapiro was supported by the Swiss National Science Foundation (grant number P2EZP2_184228), and the Princeton-Geneva Univ. collaborative travel funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Shapiro.

Ethics declarations

Data availability and conflict of interest

This manuscript has no associated data available and no known conflicts of interest.

Additional information

Communicated by Y. Ogata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

A A Schatten Class Lemma

A fundamental tool for our arguments is the observation that if \(P\in \textrm{WLOC}{}\) and f(X) is a multiplication operator in the position basis such that \(|f(x)-f(y)|\) decays suitably as \(x,y\rightarrow \infty \), then [Pf(X)] is compact. In fact we will show that this operator is Schatten-3, i.e. \(\left\| [P,f(X)]\right\| _3^3 = {\text {tr}}|[P,f(X)]|^3<\infty \), under natural conditions on f. The proof of this fact follows similar arguments to those presented in [ASS94a, AG98].

Lemma A.1

Let \(P\in \textrm{WLOC}\) be such that \(\left\| P\right\| \le 1\) and \(f\in \ell ^\infty (\mathbb {Z}^2)\) be such that

$$\begin{aligned} |f(x)-f(y)| \ \le \ D\frac{\left\| x-y\right\| }{1+\left\| x\right\| } \end{aligned}$$
(A.1)

with \(D<\infty \). Then [Pf(X)] is Schatten-3.

Proof

We have \([P,f(X)]_{xy} = P_{xy}(f(x)-f(y))\) and

$$\begin{aligned} \left\| [P,f(X)]\right\| _3 \ \le \ \sum _{b\in \mathbb {Z}^2}\left( \sum _{x\in \mathbb {Z}^2}\left\| P_{x+b,x}\right\| ^3|f(x)-f(x+b)|^3\right) ^{1/3}\,. \end{aligned}$$

Let \(B\subseteq \mathbb {Z}^2\) be a finite set, to be specified below. Applying the estimate (2.2) for \(x\in B\) (since \(P\in \textrm{WLOC}\)) and, for \(x\in B^c\), noting that \(\left\| P_{x,x+b}\right\| \le 1\), we conclude that there is \(\nu \in \mathbb {N}\) such that for any \(\mu \in \mathbb {N}\) there is \(C_\mu <\infty \) with which

$$\begin{aligned}{} & {} \sum _{x\in \mathbb {Z}^2}\left\| P_{x+b,x}\right\| ^3|f(x)-f(x+b)|^3 \ \le \ 2\Vert f\Vert _\infty ^3 \sum _{x\in B} C_\mu ^3 \frac{(1+\left\| x\right\| )^{3\nu }}{ (1+\left\| b\right\| )^{3\mu }} \nonumber \\{} & {} \quad + \sum _{x\in B^c} D^3 \frac{\left\| b\right\| ^3}{(1+\left\| x\right\| )^3}\,. \end{aligned}$$
(A.2)

Now pick B to be the set of x such that \(1+\left\| x\right\| \le (1+\left\| b\right\| )^\alpha \), with \(\alpha \) still to be determined.Then we find that the second term on the right hand side of (A.2) is bounded above by

$$\begin{aligned} D^3\left\| b\right\| ^3(1+\left\| b\right\| )^{-\alpha /2}\sum _{x}(1+\left\| x\right\| )^{-2.5} \ \le \ {\tilde{D}}^3\left\| b\right\| ^3(1+\left\| b\right\| )^{-\alpha /2}\, , \end{aligned}$$

while the first term on the right hand side is bounded above by

$$\begin{aligned} 8 C_\mu ^3(1+\left\| b\right\| )^{-3\mu }\sum _{x\in B}(1+\left\| x\right\| )^{3\nu } \le 8 C_\mu ^3(1+\left\| b\right\| )^{-3\mu +3\nu \alpha }|B|\,. \end{aligned}$$

Since B is a ball about the origin of radius \((1+\left\| b\right\| )^\alpha -1\), B is bounded above by \({\tilde{C}} (1+\left\| b\right\| )^{2\alpha }\) for some universal \({\tilde{C}}<\infty \). Hence the first term on the right hand side of (A.2) is bounded above by

$$\begin{aligned} 8 C_\mu ^3 \tilde{{\tilde{C}}}(1+\left\| b\right\| )^{-3\mu +3\nu \alpha +2\alpha }\,. \end{aligned}$$

To make the sum \(\sum _{b\in \mathbb {Z}^2}\) finite we choose \(\alpha /2-3>6\) and \(3\mu -(3\nu +2)\alpha >6\) (6 since we are taking the 1/3 power and we need at least power, say, 2 to make this summable on \(\mathbb {Z}^2\)). Both of these may be arranged since \(\alpha \) was arbitrary and \(\mu \) may be taken arbitrarily large. \(\square \)

B The SULE Basis

In this section let \(\mathcal {H}=\ell ^2(\mathbb {Z}^d)\otimes \mathbb {C}^N\) and \(V\subset \mathcal {H}\) a closed subspace.

Definition B.1

(SULE basis) A Semi-Uniformly Localized basis for V is an orthonormal basis \(\left\{ \psi _n\right\} _n\) such that there are a sequence of “localization centers” \(\left\{ x_n\right\} _n\subseteq \mathbb {Z}^d\) and \(\nu \in \mathbb {N}\) so that for any \(\mu >0\) it holds that

$$\begin{aligned} \left\| \psi _n(x)\right\| \le C_\mu (1+\left\| x-x_n\right\| )^{-\mu }(1+\left\| x_n\right\| )^{\nu }\qquad (x\in \mathbb {Z}^d)\, \end{aligned}$$
(B.1)

with \(C_\mu <\infty \).

Remark

When a semi-uniformly localized basis \(\left\{ \psi _n\right\} _n\) consists of eigenfunctions for a self-adjoint operator, it is called a Semi-Uniformly Localized Eigenfunction (SULE) basis. This notion was originally defined in [Rio+96].

It is shown in [Rio+96, Corollary 7.3] that the localization centers \(\left\{ x_n\right\} _n\) obey

$$\begin{aligned} \sum _{n}\frac{1}{(1+\left\| x_n\right\| )^{d+\varepsilon }}\ < \ \infty \qquad (\varepsilon >0) \ , \end{aligned}$$
(B.2)

a fact we shall use below. The estimate (B.1) of course implies that the operator on \(\ell ^2(\mathbb {Z}^d)\) with matrix elements \(\left\| \psi _n(x)\right\| \left\| \psi _n(y)\right\| \) is \(\textrm{WLOC}\).

The following proof appeared in [EGS05, Section 3.6]. We include it here for completeness.

Lemma B.2

For an interval \(\Delta \subseteq \mathbb {R}\), if H is a \(\Delta \)-insulator on \(\mathcal {H}\) in the sense of Definition 2.5 then there exists a SULE basis for the vector subspace \({\text {im}}(\chi _\Delta (H))\) consisting of eigenfunctions for H.

Proof

We let \(P:=\chi _\Delta (H)\) and \(P_\lambda := \chi _{\left\{ \lambda \right\} }(H)\) for each eigenvalue \(\lambda \in \Delta \) of H. Since \(\chi _{\left\{ \lambda \right\} }\) is a bounded Borel function on \(\Delta \), we conclude from Definition 2.5 that there is \(\nu \) such that for any \(\mu \) we have

$$\begin{aligned} \left\| (P_{\lambda })_{x,x_0}\right\| \ \le \ C_\mu (1+\left\| x-x_0\right\| )^{-\mu }(1+\left\| x_0\right\| )^{\nu }\, \end{aligned}$$
(B.3)

for every eigenvalue \(\lambda \in \Delta \), with \(C_\mu <\infty \).

Since all eigenfunctions are of finite multiplicity (see Definition 2.5), we have \({\text {tr}}(P_\lambda )<\infty \), so \(a_x=\left\| (P_\lambda )_{xx}\right\| \le {\text {tr}}(P_\lambda )_{xx}\) is a summable sequence. Let \(x_0\in \mathbb {Z}^d\) be a point at which \(a_x\) attains its maximum value and let \(\textbf{v}_0\in \mathbb {C}^N\) with \(\left\| \textbf{v}_0\right\| =1\) and \(\textbf{v}_0^\dagger (P_\lambda )_{xx}\textbf{v}_0=a_{x_0}\). Now define

$$\begin{aligned} \psi (x) \ :=\ \frac{1}{\sqrt{a_{x_0}}} (P_{\lambda })_{x,x_0}\textbf{v}\,. \end{aligned}$$

One verifies that \(\psi \) is an eigenvector for H with eigenvalue \(\lambda \), and it is normalized so that \(\left\| \psi \right\| ^2=1\). We have the bound

$$\begin{aligned}{} & {} \left\| (P_{\lambda })_{x,x_0}\mathbf {v_0}\right\| \ = \ \max _{\left\| \textbf{v}\right\| =1} |\langle \delta _x\otimes \textbf{v}, P_\lambda \delta _{x_0}\otimes \textbf{v}_0 \rangle | \ = \ \max _{\left\| \textbf{v}\right\| =1} |\langle P_\lambda \delta _x\otimes \textbf{v}, P_\lambda \delta _{x_0}\otimes \textbf{v}_0 \rangle | \nonumber \\{} & {} \quad \le \ \sqrt{a_x}\sqrt{a_{x_0}} \ \le \ a_{x_0} \end{aligned}$$
(B.4)

where in the penultimate step the Cauchy-Schwarz inequality was used and in the last step the fact that a achieves its maximum at \(x_0\). Combining (B.4), (B.3) and noting that \(a_{x_0}\le 1\), we find that

$$\begin{aligned} \left\| \psi (x)\right\| \ \le \ \sqrt{C_\mu } (1+\left\| x-x_0\right\| )^{-\mu /2}(1+\left\| x_0\right\| )^{\nu /2}\,. \end{aligned}$$

Applying the same process again now to \(P_\lambda -\psi \otimes \psi ^*\), whose rank is smaller by 1 compared to \(P_\lambda \), we obtain the result by induction. \(\square \)

One further consequence of our definition of an insulator (Definition 2.5) is that matrix elements of the resolvent decay, as expressed in the following.

Lemma B.3

If H is a \(\Delta \)-insulator as in Definition 2.5 then there is a (fixed, H-dependent) subset \(S\subseteq \Delta \) of full Lebesgue measure such that, for any \(E\in S\) one has

$$\begin{aligned} \left( H-\left( E+{\text {i}}\varepsilon \right) \mathbb {1}\right) ^{-1} \in \textrm{WLOC}\end{aligned}$$
(B.5)

with \(\textrm{WLOC}\) estimates uniform in \(\varepsilon \in [-1,1]\setminus \left\{ 0\right\} \).

Remark B.4

For random operators, the decay manifested in (B.5) is an almost-sure consequence of the various methods used to prove localization, and so, in principle could have been included in the definition of a deterministic insulator. We preferred to keep that definition however as is and provide the deterministic proof below.

Proof

Let \(R(z)=(H-z)^{-1}\) for \({\mathbb {I}\mathbb {m}}\{z\} >0\). It suffices to show, for any closed interval \(\Delta '\subset \textrm{Int}\Delta \) (the interior of \(\Delta \)), that there is a full measure set \(S'\subset \Delta '\) such that (B.5) holds for \(E\in S'\). Fix \(\Delta '\) and let \(\phi :\mathbb {R}\rightarrow [0,1]\) be a smooth function with \(\phi (x)=1\) on \(\Delta '\) and \(\phi (x)=0\) on \(\Delta ^c\). Then

$$\begin{aligned} R(z) \ = \ \phi (H) (H-z)^{-1} \ + \ (1-\phi (H)) (H-z)^{-1} \ =: \ R_\phi (z) + R_{1-\phi }(z) \ . \end{aligned}$$

We will bound \(R_\phi \in \textrm{WLOC}\) and \(R_{1-\phi }\in \textrm{WLOC}\) separately. The result for \(R_{1-\phi }\) is immediate, since \(\sigma (H)\ni \lambda \mapsto (1-\phi (\lambda ))(\lambda -E-{\text {i}}\varepsilon )^{-1}\) is a smooth function with derivatives bounded uniformly in \(\varepsilon \in [0,1]\), so for \(E\in \textrm{Int}\Delta '\) we have \(R_{1-\phi }(E+{\text {i}}\varepsilon ) \in \textrm{LOC}_{}\subseteq \textrm{WLOC}\), uniformly in \(\varepsilon \in [0,1]\). To bound \(R_\phi \) we will use the fact that \(\Delta \) is a mobility gap. We have

$$\begin{aligned} R_\phi (z) \ = \ \sum _{\lambda \in \mathcal {E}(\Delta )} \phi (\lambda ) (\lambda -z)^{-1} P_\lambda \ , \end{aligned}$$

where \(\mathcal {E}(\Delta )\) denotes the (countable) set of eigenvalues of H in \(\Delta \).

For \(j=1,\ldots ,N\) let \(\textbf{e}_j\) denote the elements of the standard basis for \(\mathbb {C}^N\). Fix \(x,y\in \mathbb {Z}^2\) and \(i,j\in \{1,\ldots ,N\}\) and let

$$\begin{aligned}{} & {} f_{x,y}^{i,j}(z)\ := \ \langle \textbf{e}_i, R_\phi (z)_{x,y}\mathbf {e_j} \rangle \ = \ \sum _{\lambda \in \mathcal {E}(\Delta )} \phi (\lambda ) (\lambda -z)^{-1} \langle \textbf{e}_i, (P_\lambda )_{x,y}\textbf{e}_j \rangle \\{} & {} \quad = \ \int _{\Delta } (\lambda -z)^{-1} \phi (t) {\text {d}}{m_{x,y}^{i,j}}(t) \end{aligned}$$

with

$$\begin{aligned} {\text {d}}{m_{x,y}^{i,j}}(t) \ := \ \sum _{\lambda \in \mathcal {E}(\Delta )} \langle \textbf{e}_i, (P_\lambda )_{x,y}\textbf{e}_j \rangle \, \delta (t-\lambda ){\text {d}}{\lambda } \ . \end{aligned}$$

Because \(f_{x,y}^{i,j}\) is the Borel transform of the finite Borel measure \(m_{x,y}^{i,j}\), it is well known that the limit \(\lim _{\varepsilon \rightarrow 0} f_{x,y}^{i,j}(E+{\text {i}}\varepsilon )\) exists for almost every E and satisfies

$$\begin{aligned} \left| \{E \in \mathbb {R}\ : \ |f_{x,y}^{i,j}(E+{\text {i}}0)| > \alpha \} \right| \ \le \ \frac{C}{\alpha }\int _{\mathbb {R}} \phi (t){\text {d}}{|m_{x,y}^{i,j}|(t)} \ , \end{aligned}$$
(B.6)

where \(| \cdot |\) denotes Lebesgue measure, \({\text {d}}{|m_{x,y}^{i,j}|}(t) = \sum _{\lambda } |\langle \textbf{e}_i, (P_\lambda )_{x,y}\textbf{e}_j \rangle | \, \delta (t-\lambda ) {\text {d}}{\lambda }\) is the total variation measure for \({\text {d}}{m_{x,y}^{i,j}}\), and C is a universal constant. To see this, recall that \(\lim _{\varepsilon \rightarrow 0} \int {\mathbb {I}\mathbb {m}}\{\frac{1}{t-E-{\text {i}}\varepsilon }\}{\text {d}}{m_{x,y}^{i,j}}(t)=0\) a.e., since \(m_{x,y}^{i,j}\) is purely singular, while \(\lim _{\varepsilon \rightarrow 0} \int {\mathbb {R}\mathbb {e}}\{\frac{1}{t-E-{\text {i}}\varepsilon }\}{\text {d}}{m_{x,y}^{i,j}}(t)=0 = Hm_{x,y}^{i,j}(E)\), the Hilbert transform of \(m_{x,y}^{i,j}\), a.e.. Thus (B.6) follows from Loomis’s weak \(L^1\) bound on the Hilbert transform of a measure [Loo46].

The integral on the right hand side of (B.6) may be bounded as follows

$$\begin{aligned}{} & {} \int _{\mathbb {R}} \phi {\text {d}}{|m_{x,y}^{i,j}|} \ = \ \sum _{\lambda \in \mathcal {E}(\Delta )} \phi (t) |\langle \textbf{e}_i, (P_\lambda )_{x,y}\textbf{e}_j \rangle | \ \le \ \left| \sup _{|g|\le 1} \sum _{\lambda \in \mathcal {E}(\Delta )} g(\lambda ) \langle \textbf{e}_i, (P_\lambda )_{x,y}\textbf{e}_j \rangle \right| \nonumber \\{} & {} \quad = \ \sup _{|g|\le 1} \langle \delta _x\otimes \textbf{e}_i, P_\Delta (H) g(H) \delta _y \otimes \textbf{e}_j \rangle \ \le \ \sup _{|g|\le 1} \left\| (P_\Delta (H) g(H))_{x,y}\right\| \ . \end{aligned}$$
(B.7)

Using Definition 2.5 to bound the right hand side, we see that we have shown the following

There are \(\nu \in \mathbb {N}\) such that for every \(\mu \in \mathbb {N}\) and \(\alpha >0\) we have

$$\begin{aligned} \left| \{E \in \mathbb {R}\ : \ |f_{x,y}^{i,j}(E+{\text {i}}0)| > \alpha \} \right| \ \le \ C_\mu (1+\left\| x\right\| )^{\nu } (1+ \left\| x-y\right\| )^{-\mu } \frac{1}{\alpha } \ .\nonumber \\ \end{aligned}$$
(B.8)

To prove (B.5) we need to extend (B.8) off the real axis. For the moment let xyij be fixed and write \(f\equiv f_{x,y}^{i,j}\), \(m\equiv m_{x,y}^{i,j}\) to simplify notation. For this purpose, let \(0<s<1\) and note that the function \(|f(z)|^s\) is sub-harmonic in the upper half plane. Let \({\tilde{\Delta }}= \{t : \textrm{dist}(t,\Delta )\le 1\}\) and define

$$\begin{aligned} g(E) = |f(E+{\text {i}}0)|^s \chi _{{\tilde{\Delta }}}(E) \quad \text {and} \quad h(E) = |f(E+{\text {i}}0)|^s (1-\chi _{{\tilde{\Delta }}}(E)) \ . \end{aligned}$$

By the subharmonicity of \(|f(z)|^s\), we have

$$\begin{aligned} |f(z)|^s \ \le \ \mathcal {P}g(z) + \mathcal {P}h(z) \end{aligned}$$

for all z in the upper half plane, \(\mathcal {P}g(z)=\frac{1}{\pi }\int g(t){\mathbb {I}\mathbb {m}}\{\frac{1}{t-z}\}{\text {d}}{t}\) denotes the Poisson integral. Because the Poisson kernel is a radially decreasing function,

$$\begin{aligned} |f(E+{\text {i}}\varepsilon )|^s \ \le \ Mg(E) + Mh(E) \ , \end{aligned}$$

with Mg, Mh the Hardy-Littlewood maximal functions of gh, respectively. Since g is compactly supported, it follows from (B.6) that \(g\in L^p(\mathbb {R})\) for, say, \(p=\frac{2}{1+s}>1\), with

$$\begin{aligned}{} & {} \left\| g\right\| _{L_p}^p \ = \ \frac{1}{p} \int _0^\infty t^{p-1} |\{ |g|>t\}| {\text {d}}{t} \ \le \ C \int _0^\infty t^{p-1} \min \left( |{\tilde{\Delta }}|, t^{-1/s}\int _{\mathbb {R}}\phi {\text {d}}{|m|} \right) {\text {d}}{t} \\{} & {} \quad \le \ C |{\tilde{\Delta }}|^{1-sp} \left( \int _{\mathbb {R}} \phi {\text {d}}{|m|} \right) ^{sp} \ . \end{aligned}$$

Because \(|f(z)|^s\le \frac{1}{\textrm{dist}(z,\Delta )^s} \left( \int \phi {\text {d}}{|m|} \right) ^s\), we have \(h\in L^q(\mathbb {R})\), for, say, \(q=\frac{2}{s}>1\), with

$$\begin{aligned} \left\| h\right\| _{L_q}^q \ \le \ \int _{{\tilde{\Delta }}^c} \frac{1}{\textrm{dist}(t,\Delta )^{qs}} \left( \int \phi {\text {d}}{|m|} \right) ^{qs} {\text {d}}{t} \ \le \ C \left( \int \phi {\text {d}}{|m|} \right) ^{qs} \ . \end{aligned}$$

Thus

$$\begin{aligned} \left| \{ E \ : \ \sup _{\varepsilon \in (0,1]} |f(E+{\text {i}}\varepsilon )|^s > \alpha \} \right| \ \le&\ \left| \{ E \ : \ Mg(E)\ge \tfrac{\alpha }{2} \} \right| \ + \ \left| \{ E \ : \ Mh(E) \ge \tfrac{\alpha }{2}\} \right| \\ \le&C \left( \frac{1}{\alpha ^p} \left( \int _{\mathbb {R}} \phi {\text {d}}{|m|} \right) ^{sp} + \frac{1}{\alpha ^q} \left( \int \phi {\text {d}}{|m|} \right) ^{qs} \right) \ , \end{aligned}$$

by the Hardy-Littlewood maximal inequality. Using (B.7) and Definition 2.5, we find that we have shown:

There are \(\nu \in \mathbb {N}\), \(s<1\), and \(p,q>1\) such that for \(\mu \in \mathbb {N}\) and \(\alpha >0\) we have

$$\begin{aligned}{} & {} \left| \{ E \ : \ \sup _{\varepsilon \in (0,1]} |f^{i,j}_{x,y}(E+{\text {i}}\varepsilon )|^s > \alpha \} \right| \nonumber \\{} & {} \quad \le \ C_\mu \left( \frac{1}{\alpha ^p} (1+\left\| x\right\| )^{sp\nu } (1+ \left\| x-y\right\| )^{-sp\mu } + \frac{1}{\alpha ^q} (1+\left\| x\right\| )^{sq\nu } (1+ \left\| x-y\right\| )^{-sq\mu }\right) \ ,\nonumber \\ \end{aligned}$$
(B.9)

for every \(x,y\in \mathbb {Z}^2\) and \(i,j\in \{1,\ldots ,N\}\).

To prove (B.5) we now apply a Borel-Cantelli argument. Fix \(\nu \), \(s<1\) and \(p,q>1\) as above and let \(\nu '\in \mathbb {N}\) be such that \(\nu '=\nu + 3/\min (sp,sq)\). Let \(\mu '>0\) and apply (B.9) with \(\alpha =(1+\left\| x\right\| )^{\nu '} (1+ \left\| x-y\right\| )^{-\mu '}\) and \(\mu > \mu ' +3/\min (sp,sq)\) to conclude that

$$\begin{aligned}{} & {} \sum _{x,y,i,j} \left| \left\{ E \ : \ \sup _{\varepsilon \in (0,1]} |f^{i,j}_{x,y}(E+{\text {i}}\varepsilon )|^s > (1+\left\| x\right\| )^{\nu '} (1+ \left\| x-y\right\| )^{-\mu '} \right\} \right| \\{} & {} \quad \le \ C_{\mu }\sum _{x,y,i,j} (1+ \left\| x\right\| )^{-3} (1+\left\| x-y\right\| )^{-3} \ < \ \infty \ . \end{aligned}$$

We conclude from the Borel-Cantelli lemma that there is a full measure set of energies on which

$$\begin{aligned} \sup _{\varepsilon \in (0,1]} |f^{i,j}_{x,y}(E+{\text {i}}\varepsilon )|^s \ \le \ (1+\left\| x\right\| )^{\nu '} (1+ \left\| x-y\right\| )^{-\mu '} \end{aligned}$$

for all but finitely many xyij. Since for each ijxy we have also have \(\sup _{\varepsilon \in (0,1]} |f^{i,j}_{x,y}(E+{\text {i}}\varepsilon )|^s < \infty \) on a full measure set of E, we conclude that there is a full measure set of E on which

$$\begin{aligned} \sup _{\varepsilon \in (0,1]} |f^{i,j}_{x,y}(E+{\text {i}}\varepsilon )|^s \ \le \ C_{\mu '} (1+\left\| x\right\| )^{\nu '} (1+ \left\| x-y\right\| )^{-\mu '} \end{aligned}$$

Repeating this for each \(\mu '\in \mathbb {N}\) (a countable set) we find that (B.5) holds for E in a set of full measure. \(\square \)

C Proof of Proposition 4.3

In this section we prove that \({\text {index}}\mathbb {Q}U = 0\,\) for Q a projection onto a subset of the mobility gap (this is Proposition 4.3). Since Q projects onto localized states of H, we know it is spanned by a SULE basis \(\left\{ \psi _n\right\} _n\) as in Definition B.1.

Let us define an operator V on \({\text {im}}Q\), diagonal in the SULE basis, via

$$\begin{aligned} V \psi _n := \exp ({\text {i}}\arg (x_n\cdot e_1+{\text {i}}x_n\cdot e_2)) \psi _n\,. \end{aligned}$$

We extend V to \(\mathcal {H}\) by defining \(V\psi =\psi \) for \(\psi \in {\text {im}}Q^\perp \). Clearly, V is unitary and commutes with Q. Thus \({\text {index}}\mathbb {Q} V = 0\), so it suffices to prove \( (U-V)Q=:B\) is compact. We shall show it is Schatten. For this, it suffices to show

$$\begin{aligned} \sum _y\left( \sum _x|B_{x,x+y}|^p\right) ^{1/p}<\infty \,. \end{aligned}$$

The proof is similar to that of Lemma A.1, but here we have the added complication of having to control the infinite collection \(\left\{ \psi _n\right\} _n\).

Note that

$$\begin{aligned} B_{x,y} = \sum _{n=1}^\infty ({\text {e}}^{{\text {i}}\arg (x)}-{\text {e}}^{{\text {i}}\arg (x_n)}))\psi _n(x)\overline{\psi _n(y)}\,. \end{aligned}$$

Now defining \(f(x) := \exp ({\text {i}}\arg (x))\) we have

$$\begin{aligned}{} & {} |B_{x,y}|^p \ \le \ \left( \sum _{n=1}^\infty |f(x)-f(x_n)||\psi _n(x)||\psi _n(y)|\right) ^p \\{} & {} \quad \le \ \sum _{n}|f(x)-f(x_n)|^p|\psi _n(x)||\psi _n(y)| \ , \end{aligned}$$

where we have used Hölder’s inequality in the form

$$\begin{aligned} (\sum _j a_j b_j c_j)^p \ \le \ (\sum _j a_j^p b_j c_j) \, (\sum _j b_j^2)^{\frac{p-1}{2}}\, (\sum _j c_j^2)^{\frac{p-1}{2}} \end{aligned}$$

as well as the fact that \( \sum _n |\psi _n(x)|^2 \le 1 \), i.e., \(\sum _n \psi _n\otimes \psi _n^*= Q \le \mathbb {1}\).

Now we observe that f obeys the estimate in (A.1), so that using (B.1) we find

$$\begin{aligned} |B_{x,x+y}|^p&\le \ D^pC_\mu ^2\sum _{n} \frac{\left\| x-x_n\right\| ^p}{(1+\left\| x_n\right\| )^{p/2}(1+\left\| x\right\| )^{p/2}}(1+\left\| x-x_n\right\| )^{-\mu }\\&\quad (1+\left\| x+y-x_n\right\| )^{-\mu +p}(1+\left\| x_n\right\| )^{2\nu }\\&\le \ D^pC_\mu ^2\sum _{n} (1+\left\| x-x_n\right\| )^{-\mu +p}(1+\left\| x+y-x_n\right\| )^{-\mu +p}(1+\left\| x_n\right\| )^{2\nu -p/2}\\&\quad (1+\left\| x\right\| )^{-p/2}\\&\le \ D^pC_\mu ^2(1+\left\| y\right\| )^{-\mu /2+p/2}(1+\left\| x\right\| )^{-p/2}\sum _{n} (1+\left\| x_n\right\| )^{2\nu -p} \end{aligned}$$

where in the last step we have used the triangle inequality in the form \( (1+\left\| a\right\| )(1+\left\| a+b\right\| ) \ge 1+\left\| b\right\| \) as well as \((1+\left\| x+y-x_n\right\| )^{-\mu /2+p/2}\le 1\), \((1+\left\| x-x_n\right\| )^{-\mu /2+p/2}\le 1\).

The result now follows thanks to (B.2) and the fact \(p,\mu \) may be chosen arbitrarily large.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bols, A., Schenker, J. & Shapiro, J. Fredholm Homotopies for Strongly-Disordered 2D Insulators. Commun. Math. Phys. 397, 1163–1190 (2023). https://doi.org/10.1007/s00220-022-04511-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04511-w

Navigation