Skip to main content
Log in

Two-Point Convergence of the Stochastic Six-Vertex Model to the Airy Process

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider the stochastic six-vertex model in the quadrant started with step initial data. After a long time T, it is known that the one-point height function fluctuations are of order \(T^{1/3}\) and governed by the Tracy–Widom distribution. We prove that the two-point distribution of the height function, rescaled horizontally by \(T^{2/3}\) and vertically by \(T^{1/3}\), converges to the two-point distribution of the Airy process. The starting point of this result is a recent connection discovered by Borodin–Bufetov–Wheeler between the stochastic six-vertex model and the ascending Hall–Littlewood process (a certain measure on plane partitions). Using the Macdonald difference operators, we obtain formulas for two-point observables for the ascending Hall–Littlewood process, which for the six-vertex model give access to the joint cumulative distribution function for its height function. A careful asymptotic analysis of these observables gives the two-point convergence result under certain restrictions on the parameters of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrews, G., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Amir, G., Corwin, I., Quastel, J.: Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. Commun. Pure Appl. Math. 64, 466–537 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Aggarwal, A.: Convergence of the stochastic six-vertex model to the ASEP. Math. Phys. Anal. Geom. 20(2), 3 (2017)

    MATH  Google Scholar 

  4. Aggarwal, A.: Current fluctuations of the stationary ASEP and six-vertex model. Duke Math. J. 167(2), 269–384 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Barraquand, G.: A phase tansition for q-TASEP with a few slower particles. Stoch. Proc. Appl. 125, 2674–2699 (2015)

    MATH  Google Scholar 

  6. Borodin, A., Bufetov, A., Corwin, I.: Directed random polymers via nested contour integrals. Ann. Phys. 368, 191–247 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Borodin, A., Bufetov, A., Wheeler, M.: Between the stochastic six-vertex model and Hall-Littlewood processes. (2016). Preprint: arXiv:1611.09486

  8. Borodin, A., Corwin, I.: Macdonald processes. Probab. Theory Relat. Fields 158, 225–400 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Borodin, A., Corwin, I., Ferrari, P.L.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimension. Commun. Pure Appl. Math. 67, 1129–1214 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Borodin, A., Corwin, I., Ferrari, P., Vető, B.: Height fluctuations for the stationary KPZ equation. Math. Phys. Anal. Geom. 18, 20 (2015). https://doi.org/10.1007/s11040-015-9189-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Borodin, A., Corwin, I., Gorin, V.: Stochastic six-vertex model. Duke Math. J. 165(3), 563–624 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Borodin, A., Corwin, I., Gorin, V., Shakirov, S.: Observables of Macdonald processes. Trans. Am. Math. Soc. to appear., (2013). Preprint. arXiv:1306.0659

  13. Borodin, A., Corwin, I., Remenik, D.: Log-Gamma polymer free energy fluctuations via a Fredholm determinant identity. Commun. Math. Phys. 324, 215–232 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Borodin, A., Corwin, I., Remenik, D.: Multiplicative functionals on ensembles of non-intersecting paths. Ann. Inst. H. Poincaré Probab. Stat. 51, 28–58 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Borodin, A., Corwin, I., Sasamoto, T.: From duality to determinants for \(q\)-TASEP and ASEP. Ann. Probab. 42, 2314–2382 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Borodin, A., Olshanski, G.: The ASEP and determinantal point processes. Commun. Math. Phys. 353, 853–903 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Borodin, A.: Stochastic higher spin six vertex model and Macdonald measures. J. Math. Phys. 59(2), 023301 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions. Sel. Math. 24(2), 751–874 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Corwin, I., Dimitrov, E.: Transversal fluctuations of the ASEP, stochastic six vertex model, and Hall–Littlewood Gibbsian line ensembles. Commun. Math. Phys. 363, 435–501 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Corwin, I., Ghosal, P., Shen, H., Tsai, L.-C.: Stochastic PDE limit of the six vertex model. Commun. Math. Phys. 375, 1945–2038 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Calabrese, P., Le Doussal, P., Rosso, A.: Free-energy distribution of the directed polymer at high temperature. EPL (Europhys. Lett.) 90, 20002 (2010)

    ADS  Google Scholar 

  22. Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices: Theory Appl., 1 (2012)

  23. Dimitrov, E.: KPZ and Airy limits of Hall-Littlewood random plane partitions. (2016). Preprint: arXiv:1602.00727

  24. Dimitrov, E.: KPZ and Airy limits of Hall–Littlewood random plane partitions. Ann. Inst. H. Poincaré Probab. Statist. 54, 640–693 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Dotsenko,V.: Replica Bethe ansatz derivation of the Tracy–Widom distribution of the free enerrgy fluctuations in one-dimensional directed polymers. J. Stat. Mech. (07):P07010 (2010)

  26. Dotsenko, V.: Two-point free energy distribution function in (1+1) directed polymers. J. Phys. A., 46 (2013)

  27. Dotsenko, V.: \(n\)-point free energy distribution function in one dimensional random directed polymers. Condens. Matter Phys., 17 (2014)

  28. Dauvergne, D., Ortmann, J., Virág, B.: The directed landscape. (2018). Preprint: arXiv:1812.00309

  29. Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977)

    ADS  MathSciNet  Google Scholar 

  30. Ferrari, P.L., Spohn, H.: Step fluctuations for a faceted crystal. J. Stat. Phys. 113, 1–46 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Ferrari, P.L., Veto, B.: Tracy–Widom asymptotics for q-TASEP. Ann. Inst. Henri Poincaré Probab. Stat. 51, 1465–1485 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Gwa, H.-L., Spohn, H.: Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian. Phys. Rev. Lett. 68, 725–728 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Halpin-Healy, T., Takeuchi, K.: A KPZ cocktail-shaken, not stirred: toasting 30 years of kinetically roughened surfaces. J. Stat. Phys. 160, 794–814 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Heckman, G.J., Opdam, E.M.: Yang’s system of particles and Hecke algebras. Ann. Math. 145, 139–173 (1997)

  35. Imamura, T., Sasamoto, T., Spohn, H.: On the equal time two-point distribution of the one-dimensional KPZ equation by replica. J. Phys. A., 46, (2013)

  36. Johansson, K.: Discrete polynuclear growth and determinantal processes. Commun. Math. Phys. 242, 277–329 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Johansson, K.: The arctic circle boundary and the Airy process. Ann. Probab. 33, 1–30 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Kardar, M., Parisi, G., Zhang, Y.C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    ADS  MATH  Google Scholar 

  39. Krishnan, A., Quastel, J.: Tracy–Widom fluctuations for perturbations of the log-gamma polymer in intermediate disorder. Ann. Appl. Probab. 28(6), 3736–3764 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130(4), 1605 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press Inc., New York (1995)

    MATH  Google Scholar 

  42. McGuire, J.B.: Study of exactly soluble one-dimensional N-body problems. J. Math. Phys. 5(5), 622–636 (1964)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Matetski, K., Quastel, J., Remenik, D.: The KPZ fixed point. (2017). Preprint: arXiv:1701.00018v2

  44. Nguyen, V.-L., Zygouras, N.: Variants of geometric RSK, geometric PNG and the multipoint distribution of the log-gamma polymer. Int. Math. Res Notices (2016)

  45. Oxford, S.: The Hamiltonian of the quantized nonlinear Schrödinger equation. Ph.D. thesis, UCLA (1979)

  46. Petrov, L.: Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes. Probab. Theory Relat. Fields 160, 429–487 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Prasolov, V.: Problems and Theorems in Linear Algebra. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  48. Prähofer, M., Spohn, H.: Scale invariance of the PNG Droplet and the Airy process. J. Stat. Phys. 108, 1071–1106 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Prohlac, S., Spohn, H.: The propagator of the attractive delta-Bose gas in one dimension. J. Math. Phys. 52, 122106 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Prolhac, S., Spohn, H.: Two-point generating function of the free energy for a directed polymer in a random medium. J. Stat. Mech.-Theory E., P01031 (2011)

  51. Quastel, J., Spohn, H.: The one-dimensional KPZ equation and its universality class. J. Stat. Phys. 160, 965–984 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Quastel, J., Sarkar, S.: Convergence of exclusion processes and KPZ equation to the KPZ fixed point. (2020). arXiv:2008.06584

  53. Robbins, H.: A remark on Stirling’s formula. Amer. Math. Mon. 62, 26–29 (1955)

  54. Simon, B.: Trace Ideals and Their Applications, 2nd edn. AMS, Providence (2005)

    MATH  Google Scholar 

  55. Stein, E., Shakarchi, R.: Complex Analysis. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  56. Tracy, C.A., Widom, H.: Level spacing distributions and the Airy kernel. Commun. Math. Phys. 159, 151–174 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Tracy, C., Widom, H.: Asymptotics in ASEP with step initial condition. Commun. Math. Phys. 290, 129–154 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Tracy, C., Widom, H.: Formulas and asymptotics for the asymmetric simple exclusion process. Math. Phys. Anal. Geom. 14, 211–235 (2011)

    MathSciNet  MATH  Google Scholar 

  59. Virág, B.: The heat and the landscape I. (2020). arXiv:2008.07241

  60. Vuletić,M.: The shifted Schur process and asymptotics of large random strict plane partitions. Int. Math. Res. Notices, 14 (2007). https://doi.org/10.1093/imnr/rnm043

  61. Vuletić, M.: A generalization of MacMahon’s formula. Trans. Am. Math. Soc. 361, 2789–2804 (2009)

Download references

Acknowledgements

The author would like to thank Alexei Borodin, Guillaume Barraquand and Ivan Corwin for useful comments on earlier drafts of this paper as well as Amol Aggarwal for stimulating conversations about computing \(L^2\) norms of Cauchy determinants. The author is partially supported by the Minerva Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeni Dimitrov.

Additional information

Communicated by K. Johansson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitrov, E. Two-Point Convergence of the Stochastic Six-Vertex Model to the Airy Process. Commun. Math. Phys. 398, 925–1027 (2023). https://doi.org/10.1007/s00220-022-04499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04499-3

Navigation