Skip to main content
Log in

About Linearization of Infinite-Dimensional Hamiltonian Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This article is concerned with analytic Hamiltonian dynamical systems in infinite dimension in a neighborhood of an elliptic fixed point. Given a quadratic Hamiltonian, we consider the set of its analytic higher order perturbations. We first define the subset of elements which are formally symplectically conjugated to a (formal) Birkhoff normal form. We prove that if the quadratic Hamiltonian satisfies a Diophantine-like condition and if such a perturbation is formally symplectically conjugated to the quadratic Hamiltonian, then it is also analytically symplectically conjugated to it. Of course what is an analytic symplectic change of variables depends strongly on the choice of the phase space. Here we work on periodic functions with Gevrey regularity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If we fix any point \(\omega _0\in \mathbb {R}^\mathbb {Z}\), then the set of Diophantine frequencies \(\omega \) such that \(|\omega -\omega ^{(0)}|_\infty <1/2\) is again typical.

  2. A vector \(\omega \in \mathbb {R}^n\) is called diophantine when it is badly approximated by rationals, i.e. it satisfies, for some \(\gamma ,\tau >0\), \({\left| k\cdot \omega \right| } \ge \gamma {\left| k\right| }^{-\tau },\quad \forall k\in \mathbb {Z}^n\setminus {\left\{ 0\right\} }\,\).

  3. We recall that given a complex Hilbert space H with a Hermitian product \((\cdot ,\cdot )\), its realification is a real symplectic Hilbert space with scalar product and symplectic form given by

    $$\begin{aligned} \langle u,v\rangle = 2\mathrm{Re}(u,v)\,,\quad \omega (u,v)= 2\mathrm{Im}(u,v)\,. \end{aligned}$$
  4. for example if \(\chi = 15/14\) the sup on the left hand side is smaller than \(-0,2\).

  5. A given \(h>1\) appears \({{ {\alpha }}_h + { {\beta }}_h + { {\alpha }}_{-h} + { {\beta }}_{-h}}\) times in the list \(\widehat{n}\). Thus in order to get the summand \( h {\left( { {\alpha }}_h - { {\beta }}_h - { {\alpha }}_{-h} + { {\beta }}_{-h}\right) }\) we assign to the \(\widehat{n}_l\) with \(\widehat{n}_l=h\) the sign \({\sigma }_l=+ \), \({\alpha }_h+{\beta }_{-h}\) times and the sign \({\sigma }_l=- \), \({\alpha }_{-h}+{\beta }_{h}\) times. Let us now consider the case \(h=1\). By construction, 1 appears \({{ {\alpha }}^{(1)}+ { {\beta }}^{(1)}+ { {\alpha }}_{-1} + { {\beta }}_{-1}+ {\alpha }_0 +{\beta }_0}\) times in \(\widehat{n}\). Thus in order to obtain the summand \( {\left( { {\alpha }}^{(1)}- { {\beta }}^{(1)}- { {\alpha }}_{-1} + { {\beta }}_{-1}\right) }\) we assign to the \(\widehat{n}_l\) with \(\widehat{n}_l=1\) the sign \({\sigma }_l=+ \), \({\alpha }_1+{\beta }_{-1}\) times, the sign \({\sigma }_l=- \), \({\alpha }_{-1}+{\beta }_{1}\) times and \({\sigma }_l=0\) the remaining \({\alpha }_0 +{\beta }_0\) times.

  6. recalling that the \(x_\ell >0\) and that \( 1+(2^\theta -1)k - (k+1)^\theta \ge 0\), with \(k= n+2>1\).

  7. Namely the solution of the equation \(\partial _t \Phi (u,t)=X(\Phi (u,t))\) with initial datum \(\Phi (u,0)=u.\)

  8. Using that for \(x,y\ge 0\) and \(0\le c\le 1\) we get \((x+y)^c\le x^c+y^c.\)

  9. Using that \(\ln (1+y)\le 1+\ln y\) for every \(y\ge 1.\)

  10. Using that, for every fixed \(0<{\mathfrak C} \le 1,\) we have \({\mathfrak C} x\ge \ln x\) for every \(x\ge \frac{2}{{\mathfrak C}}\ln \frac{1}{{\mathfrak C}} .\)

References

  1. Baldi, P., Berti, M., Haus, E., Montalto, R.: Time quasi-periodic gravity water waves in finite depth. Invent. Math. 214(2), 739–911 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bambusi, D.: Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations. Math. Z. 230(2), 345–387 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Bambusi, D.: On long time stability in Hamiltonian perturbations of nonresonant linear PDE’s. Nonlinearity 12, 823–850 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bambusi, D.: Birkhoff normal form for some nonlinear PDEs. Commun. Math. Phys. 234(2), 253–285 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Bambusi, D., Delort, J.-M., Grébert, B., Szeftel, J.: Almost global existence for Hamiltonian semilinear Klein–Gordon equations with small Cauchy data on Zoll manifolds. Commun. Pure Appl. Math. 60(11), 1665–1690 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Bambusi, D., Grébert, B.: Forme normale pour NLS en dimension quelconque. C. R. Math. Acad. Sci. Paris 337(6), 409–414 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Bambusi, D., Grébert, B.: Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J. 135(3), 507–567 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Bambusi, D., Stolovitch, L.: Convergence to normal forms of integrable PDEs. Comm. Math. Phys. 376(2), 1441–1470 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Benettin, G., Chierchia, L., Guzzo, M.: The steep Nekhoroshev’s theorem. Commun. Math. Phys. 342, 569–601 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Benettin, G., Galgani, L., Giorgilli, A.: A proof of Nekhoroshev’s theorem for the stability times in nearly integrable Hamiltonian systems. Celest. Mech. 37(1), 1–25 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Benettin, G., Fröhlich, J., Giorgilli, A.: A Nekhoroshev-type theorem for Hamiltonian systems with infinitely many degrees of freedom. Commun. Math. Phys. 119(1), 95–108 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Berti, M., Kappeler, Th., Montalto, R.: Large KAM tori for perturbations of the defocusing NLS equation. Astérisque (403), viii+148 (2018)

  13. Berti, M., Biasco, L., Procesi, M.: KAM theory for the Hamiltonian derivative wave equation. Annales Scientifiques de l’ENS 46(2), 299–371 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Berti, M., Bolle, P.: Quasi-periodic solutions of nonlinear wave equations on the d-dimensional torus. In: EMS Series of Lectures in Mathematics (2020)

  15. Berti, M., Bolle, P., Procesi, M.: An abstract Nash–Moser theorem with parameters and applications to PDEs. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 377–399 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Berti, M., Corsi, L., Procesi, M.: An abstract Nash–Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Commun. Math. Phys. (2014). https://doi.org/10.1007/s00220-014-2128-4

    Article  MATH  Google Scholar 

  17. Berti M., Feola R., Pusateri F., Birkhoff normal form and long time existence for periodic gravity Water Waves, preprint arXiv:1810.11549

  18. Berti, M., Delort, J.M.: Almost Global Existence of Solutions for Capillarity-Gravity Water Waves Equations with Periodic Spatial Boundary Conditions. Springer, Berlin (2018)

    MATH  Google Scholar 

  19. Berti, M., Franzoi, L., Maspero, A.: Traveling quasi-periodic water waves with constant vorticity. ARMA 240(1), 99–202 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Biasco, L., Massetti, J.E., Procesi, M.: An abstract Birkhoff normal form theorem and exponential type stability of the 1d NLS. Commun. Math. Phys. 375(3), 2089–2153 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Biasco, L., Massetti, J..E.., Procesi, M.: Almost-periodic invariant tori for the NLS on the circle. Ann. Inst. H. Poincaré Anal. Non Linéaire 38(3), 711–758 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Bounemoura, A., Fayad, B., Niederman, L.: Double exponential stability for generic real-analytic elliptic equilibrium points (2015). Preprint ArXiv arXiv:1509.00285

  23. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. (2) 148(2), 363–439 (1998)

    MathSciNet  MATH  Google Scholar 

  24. Bourgain, J.: Construction of approximative and almost periodic solutions of perturbed linear Schrödinger and wave equations. Geom. Funct. Anal. 6(2), 201–230 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Bourgain, J.: On invariant tori of full dimension for 1D periodic NLS. J. Funct. Anal. 229(1), 62–94 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Bruno, A.D.: Analytical form of differential equations. Trans. Mosc. Math. Soc. 25, 131–288 (1971); 26, 199–239 (1972), 1971–1972

  27. Corsi, L., Montalto, R.: Quasi-periodic solutions for the forced Kirchhoff equation on \(\mathbb{T}^d\). Nonlinearity 31(11), 5075–5109 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Cong, H., Liu, J., Shi, Y., Yuan, X.: The stability of full dimensional KAM tori for nonlinear Schrödinger equation. J. Differ. Equ. 264(7), 4504–4563 (2018)

    ADS  MATH  Google Scholar 

  29. Cong, H., Mi, L., Wang, P.: A Nekhoroshev type theorem for the derivative nonlinear Schrödinger equation. J. Differ. Equ. 268(9), 5207–5256 (2020)

    ADS  MATH  Google Scholar 

  30. Cong, H., Yuan, X.: The existence of full dimensional invariant tori for 1-dimensional nonlinear wave equation. Annales de l’Institut Henri Poincare (C) Analyse Non Lineaire 38(3), 759–786 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46(11), 1409–1498 (1993)

    MathSciNet  MATH  Google Scholar 

  32. Delort, J.-M., Szeftel, J.: Long-time existence for small data nonlinear Klein–Gordon equations on tori and spheres. Int. Math. Res. Not. 37, 1897–1966 (2004)

    MathSciNet  MATH  Google Scholar 

  33. Delort, J.-M., Szeftel, J.: Bounded almost global solutions for non Hamiltonian semi-linear Klein–Gordon equations with radial data on compact revolution hypersurfaces. Ann. Inst. Fourier (Grenoble) 56(5), 1419–1456 (2006)

    MathSciNet  MATH  Google Scholar 

  34. Delort, J.M.: A quasi-linear Birkhoff normal forms method. application to the quasi-linear Klein–Gordon equation on \(\mathtt{S}^1\). Astérisque 341, vi+113 (2012)

  35. Delort, J.-M.: Quasi-Linear Perturbations of Hamiltonian Klein–Gordon Equations on Spheres. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  36. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. Math. (2) 172(1), 371–435 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Faou, E., Grébert, B.: A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus. Anal. PDE 6(6), 1243–1262 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Feola, R., Giuliani, F.: Quasi-periodic traveling waves on an infinitely deep perfect fluid under gravity. Preprint arXiv:2005.08280 (2020)

  39. Feola, R., Giuliani, F., Pasquali, S.: On the integrability of Degasperis–Procesi equation: control of the Sobolev norms and Birkhoff resonances. J. Differ. Equ. 266, 3390–3437 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Feola, R., Giuliani, F., Procesi, M.: Reducibile KAM tori for the Degasperis–Procesi equation. Commun. Math. Phys. 377, 1681–1759 (2020)

    ADS  MATH  Google Scholar 

  41. Feola, R., Iandoli, F.: Long time existence for fully nonlinear NLS with small Cauchy data on the circle. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XXII, 109–182 (2021)

    MathSciNet  MATH  Google Scholar 

  42. Feola, R., Iandoli, F.: A non-linear Egorov theorem and Poincaré–Birkhoff normal forms for quasi-linear pdes on the circle. Preprint arXiv:2002.1244 (2020)

  43. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226(6), 5361–5402 (2011)

    MathSciNet  MATH  Google Scholar 

  44. Iooss, G., Lombardi, E.: Polynomial normal forms with exponentially small remainder for analytic vector fields. J. Differ. Equ. 212(1), 1–61 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Kappeler, Th., Pöschel, J.: KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3, vol. 45. Springer, Berlin (2003)

    Google Scholar 

  46. Kuksin, S.B.: Perturbation of conditionally periodic solutions of infinite-dimensional Hamiltonian systems. Izv. Akad. Nauk SSSR Ser. Mat. 52(1), 41–63 (1988)

    MathSciNet  MATH  Google Scholar 

  47. Kuksin, S., Pöschel, J.: Invariant cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143(1), 149–179 (1996)

    MathSciNet  MATH  Google Scholar 

  48. Kuksin, S.B.: Analysis of Hamiltonian PDEs. In: Oxford Lecture Series in Mathematics and its Applications, vol. 19. Oxford University Press, Oxford (2000)

  49. Lombardi, E., Stolovitch, L.: Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation. Ann. Sci. Ec. Norm. Sup. 43, 659–718 (2010)

    MathSciNet  MATH  Google Scholar 

  50. Nehorošev, N.N.: An exponential estimate of the time of stability of nearly integrable Hamiltonian systems. Uspehi Mat. Nauk 32(198), 5–66 (1977)

    MathSciNet  Google Scholar 

  51. Niederman, L.: Exponential stability for small perturbations of steep integrable Hamiltonian systems. Ergod. Theory Dyn. Syst. 24(2), 593–608 (2004)

    MathSciNet  MATH  Google Scholar 

  52. Nikolenko, N.V.: The method of Poincaré normal forms in problems of integrability of equations of evolution type. Russ. Math. Surv. 41(5), 63–114 (1986)

    MATH  Google Scholar 

  53. Pöschel, J.: Small divisors with spatial structure in infinite dimensional Hamiltonian systems. Commun. Math. Phys. 127(2), 351–393 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Pöschel, J.: On invariant manifolds of complex analytic mappings near fixed points. Expo. Math. 4, 97–109 (1986)

    MathSciNet  MATH  Google Scholar 

  55. Pöschel, J.: On Nekhoroshev’s estimate at an elliptic equilibrium. Int. Math. Res. Not. 1999(4), 203–215 (1999)

    MathSciNet  MATH  Google Scholar 

  56. Procesi, C., Procesi, M.: Reducible quasi-periodic solutions for the non linear Schrödinger equation. BUMI 9(2), 189 (2016)

    MATH  Google Scholar 

  57. Rüssmann, H.: On the convergence of power series transformations of analytic mappings near a fixed point into a normal form. Preprint I.H.E.S., M/77/178, 1–44 (1977)

  58. Serre, J.-P.: Lie algebras and lie groups. In: Lecture Notes in Mathematics, vol. 1500. Springer (1992)

  59. Siegel, C.L.: Iteration of analytic functions. Ann. Math. 2(43), 607–612 (1942)

    MathSciNet  MATH  Google Scholar 

  60. Stolovitch, L..: Singular complete integrabilty. Publ. Math. I.H.E.S. 91, 133–210 (2000)

    MATH  Google Scholar 

  61. Stolovitch, L.: Family of intersecting totally real manifolds of \((\mathbb{C}^n,0)\) and germs of holomorphic diffeomorphisms. Bull. Soc. Math. Fr. 143(1), 247–263 (2015)

    MATH  Google Scholar 

  62. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  63. Yuan, X.: KAM theorem with normal frequencies of finite limit-points for some shallow water equations. CPAM 74(6), 1193–1281 (2021)

    MathSciNet  MATH  Google Scholar 

  64. Yuan, Xiaoping, Zhang, Jing: Long time stability of Hamiltonian partial differential equations. SIAM J. Math. Anal. 46(5), 3176–3222 (2014)

    MathSciNet  MATH  Google Scholar 

  65. Zehnder, E.: C. L. Siegel’s linearization theorem in infinite dimensions. Manuscr. Math. 23(4), 363–371 (1977/1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Stolovitch.

Additional information

Communicated by C.Liverani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research of L. Stolovitch was supported by the French government, through the UCAJEDI Investments in the Future project managed by the National Research Agency (ANR) with the Reference Number ANR-15-IDEX-01.

Appendix A. Technical Lemmata

Appendix A. Technical Lemmata

In the following, we adapt material from [BMP18] to non mass conservation situation. There are no new conceptual difficulties w.r.to [BMP18] but the proofs require a bit more care and some further case analysis. For the readers convenience, we have written also the proofs of a couple of technical lemmata from [BMP18] on which we rely.

1.1 Proof of Lemmata 3.5 and 3.6

We follow here [BMP18] [Appendix B. Proof of lemma 3.1]. For any \(H\in {{\mathcal {H}}}_{r,s}\) (we recall that this space depends on two extra parameters \(p\ge \frac{1}{2}\) and \(0<\theta \le 1\)) we define a map

$$\begin{aligned} B_1(\ell ^2)\rightarrow \ell ^2 \,,\quad y={\left( y_j\right) }_{j\in \mathbb {Z}}\mapsto {\left( Y^{(j)}_{H}(y;r,s)\right) }_{j\in \mathbb {Z}} \end{aligned}$$

by setting

$$\begin{aligned} Y^{(j)}_{H}(y;r,s) := \sum _*|H_{{ {\alpha }},{ {\beta }}}| \frac{({ {\alpha }}_j+{ {\beta }}_j)}{2}c^{(j)}_{r,s}({ {\alpha }},{ {\beta }}) y^{{ {\alpha }}+{ {\beta }}-e_j} \end{aligned}$$
(32)

where \(e_j\) is the j-th basis vector in \({\mathbb N}^\mathbb {Z}\), while the coefficient

$$\begin{aligned} c^{(j)}_{r,s}({\alpha },{\beta })= r^{|{\alpha }|+|{\beta }|-2} {\left( \frac{\langle j \rangle ^2}{\prod _i\langle i \rangle ^{{ {\alpha }}_i+{ {\beta }}_i}}\right) }^{p} e^{-s (\sum _i \langle i \rangle ^\theta ({ {\alpha }}_i+{ {\beta }}_i) -2\langle j \rangle ^\theta )} \end{aligned}$$
(33)

For brevity, we set

$$\begin{aligned} \sum _*:=\sum _{{ {\alpha }},{ {\beta }}: \;\pi ({\alpha },{\beta })=0}\,. \end{aligned}$$

The vector field \(Y_H\) is a majorant analytic function on \(\ell ^2\) which has the same norm as H. Since the majorant analytic functions on a given space have a natural ordering this gives us a natural criterion for immersions, as formalized in the following Lemma.

Lemma A.1

Let \(r,{r^*}>0,\,s,s'\ge 0.\) The following properties hold.

  1. (1)

    The norm of H can be expressed as

    $$\begin{aligned} {\left\| H\right\| }_{r,s}= \sup _{|y|_{\ell ^2}\le 1}{\left| Y_H(y;r,s)\right| }_{\ell ^2} \end{aligned}$$
    (34)
  2. (2)

    Given \( H^{(1)}\in {{\mathcal {H}}}_{{r^*},s'}\) and \(H^{(2)}\in {{\mathcal {H}}}_{r,s}\,, \)

    such that for all \({ {\alpha }},{ {\beta }}\in {\mathbb N}^\mathbb {Z}_f\) and \(j\in \mathbb {Z}\) with \({ {\alpha }}_j+{ {\beta }}_j\ne 0\) one has

    $$\begin{aligned} |H^{(1)}_{{ {\alpha }},{ {\beta }}}| c^{(j)}_{{r^*},s'}({ {\alpha }},{ {\beta }}) \le c |H^{(2)}_{{ {\alpha }},{ {\beta }}}| c^{(j)}_{r,s}({ {\alpha }},{ {\beta }}), \end{aligned}$$

    for some \(c>0,\) then

    $$\begin{aligned} {\left\| H^{(1)}\right\| }_{{r^*},s'} \le c {\left\| H^{(2)}\right\| }_{r,s}\,. \end{aligned}$$

Proof of Lemma 3.5

Recalling (33), we have

$$\begin{aligned} \frac{c^{(j)}_{{r^*},s}({ {\alpha }},{ {\beta }})}{c^{(j)}_{r,s}({ {\alpha }},{ {\beta }})}= {\left( \frac{{r^*}}{r}\right) }^{|{ {\alpha }}|+|{ {\beta }}|-2}\,. \end{aligned}$$

Since \(|{ {\alpha }}|+|{ {\beta }}|-2\ge {\mathtt {d}}\), the inequality follows by Lemma A.1 with \(H^{(1)}=H^{(2)}\) and \(s=s'\). \(\square \)

In order to prove Lemma 3.6 we need some notations and results proven in [Bou05] and [CLSY].

Definition A.2

Given a vector \(v={\left( v_i\right) }_{i\in \mathbb {Z}}\in {\mathbb N}^\mathbb {Z}_f\) with \(|v|\ge 2\) we denote by \(\widehat{n}=\widehat{n}(v)\) the vector \({\left( \widehat{n}_l\right) }_{l\in I}\) (where \(I\subset {\mathbb N}\) is finite) which is the decreasing rearrangement of

$$\begin{aligned} \{{\mathbb N}\ni h> 1\;\; \text{ repeated }\; v_h + v_{-h}\; \text{ times } \} \cup {\left\{ 1\;\; \text{ repeated }\; v_1 + v_{-1} + v_0\; \text{ times } \right\} } \end{aligned}$$

Remark A.3

A good way of envisioning this list is as follows. Given an infinite set of variables \({\left( x_i\right) }_{i\in \mathbb {Z}}\) and a vector \(v={\left( v_i\right) }_{i\in \mathbb {Z}}\in {\mathbb N}^\mathbb {Z}_f\) consider the monomial \(x^v:= \prod _i x_i^{v_i}\). We can write

$$\begin{aligned} x^v= \prod _i x_i^{v_i} = x_{j_1} x_{j_2}\cdots x_{j_{|v|}}\,,\quad \text{ with }\quad j_k\in \mathbb {Z}\end{aligned}$$

then \(\widehat{n}(v)\) is the decreasing rearrangement of the list \({\left( \langle j_1 \rangle ,\dots ,\langle j_{|v|} \rangle \right) }\).

Example A.4

Let us set

$$\begin{aligned} v_{-1}=2, v_{0}=3, v_1= 1, v_{3}=1, v_{4}= 2. \end{aligned}$$

Hence, 1 is repeated 6 times, 3 is repeated 1 time, and 4 is repeated 2 times :

$$\begin{aligned} {\hat{n}}_1=4,{\hat{n}}_2= 4, {\hat{n}}_3 = 3, {\hat{n}}_4=\dots ={\hat{n}}_9=1 \end{aligned}$$

Given \({ {\alpha }},{ {\beta }}\in {\mathbb N}^\mathbb {Z}_f\) with \( |{ {\alpha }}|+|{ {\beta }}|\ge 2\) from now on we define

$$\begin{aligned} \widehat{n}=\widehat{n}({ {\alpha }}+{ {\beta }})\, \qquad \text{ and } \text{ set }\quad N:=|{ {\alpha }}|+|{ {\beta }}| \end{aligned}$$

which is the cardinality of \(\widehat{n}.\) We observe that, \(N\ge 2\) and since

$$\begin{aligned} 0= \sum _{i\in \mathbb {Z}} i{\left( { {\alpha }}_i - { {\beta }}_i\right) }= \sum _{h> 0} h {\left( { {\alpha }}_h - { {\beta }}_h - { {\alpha }}_{-h} + { {\beta }}_{-h}\right) } \,, \end{aligned}$$
(35)

there exists a choice of \({\sigma }_i = \pm 1, 0\) such thatFootnote 5

$$\begin{aligned} \sum _l \sigma _l\widehat{n}_l=0. \end{aligned}$$
(36)

with \(\sigma _l \ne 0\) if \(\widehat{n}_l \ne 1\). Hence,

$$\begin{aligned} \widehat{n}_1\le \sum _{l\ge 2}\widehat{n}_l. \end{aligned}$$
(37)

Indeed, if \(\sigma _1 = \pm 1\), the inequality follows directly from (36); if \(\sigma _1 = 0\), then \(\widehat{n}_1=1\) and consequently \(\widehat{n}_l = 1\, \forall l\). Since \(|{\alpha }|+|{\beta }|\ge 2\), the list \(\widehat{n}\) has at least two elements, so the inequality is achieved.

Lemma A.5

Given \({ {\alpha }},{ {\beta }}\) such that \(\sum _i i ({ {\alpha }}_i-{ {\beta }}_i)=0\), and \(|{\alpha }|+|{\beta }|\ge 2\), we have that setting \(\widehat{n}=\widehat{n}({ {\alpha }}+{ {\beta }})\)

$$\begin{aligned} \sum _i \langle i \rangle ^\theta ({ {\alpha }}_i+{ {\beta }}_i) =\sum _{l\ge 1} \widehat{n}_l^\theta \ge 2 \widehat{n}^\theta _1+ (2-2^\theta ) {\sum _{l\ge 3} \widehat{n}_l^\theta } . \end{aligned}$$
(38)

Proof

The lemma above was proved in [Bou05] for \(\theta =\frac{1}{2}\) and for general \(0<\theta <1\) in [CLSY][Lemma 2.1], in the case of zero mass and momentum. Below we give a proof, using only momentum conservation.

We start by noticing that if \(|{\alpha }|+|{\beta }|= 2\) then \(\widehat{n}\) has cardinality equal to two and (38) becomes \(\widehat{n}_1+\widehat{n}_2 \ge 2\widehat{n}_1\). Now, by (37), momentum conservation implies that \(\widehat{n}_1=\widehat{n}_2\) and hence (38).

If \(|{\alpha }|+|{\beta }|\ge 3\) we write

$$\begin{aligned} \sum _i \langle i \rangle ^\theta ({ {\alpha }}_i+{ {\beta }}_i) -2\widehat{n}_1^\theta =\sum _{l\ge 2} \widehat{n}_l^\theta - \widehat{n}_1^\theta \ge \sum _{l\ge 2} \widehat{n}_l^\theta - (\sum _{l\ge 2} \widehat{n}_l)^\theta \end{aligned}$$

since the cardinality of \(\widehat{n}\) is at least three we may write

$$\begin{aligned} \sum _{l\ge 2} \widehat{n}_l^\theta - (\sum _{l\ge 2} \widehat{n}_l)^\theta = \widehat{n}_2^\theta + \sum _{l\ge 3} \widehat{n}_l^\theta - (\widehat{n}_2+\sum _{l\ge 3} \widehat{n}_l)^\theta \end{aligned}$$

Now setting, for \(x_i\ge 1\), \(i=2,\ldots , N\),

$$\begin{aligned} f(x_2,\dots ,x_N):= x_2^\theta +(2^\theta - 1) \sum _{l\ge 3} x_l^\theta - (x_2+\sum _{l\ge 3} x_l)^\theta . \end{aligned}$$

Hence, we have \(\partial _{x_2} f\ge 0\) for \(x_2\ge x_3\ge 1\). Then

$$\begin{aligned} f(x_2,\dots ,x_N)\ge f(x_3,x_3,x_4,\dots ,x_N)=: f_3(x_3,\dots ,x_N)\,. \end{aligned}$$

Now we set

$$\begin{aligned}&f_n(x_n,\dots ,x_N):= f(\underbrace{x_n,\dots ,x_n}_{n-1},x_{n+1},\dots ,x_N)\\&\quad = (1+ (2^\theta -1)(n-2))x_n^\theta +\sum _{\ell \ge n+1}x_\ell - ((n-1)x_n+ \sum _{\ell \ge n+1}x_\ell )^\theta \end{aligned}$$

so that \(f(x_2,\dots ,x_N)\ge f_3(x_3,\dots ,x_N)\). Assume inductively that for some \(3\le n<N\), one has \(f(x_2,\dots ,x_N)\ge f_3(x_3,\dots ,x_N) \ge \dots \ge f_{n}(x_n,\dots ,x_N)\). By direct computationFootnote 6

$$\begin{aligned} \partial _{x_n} f_n&=\theta \Big [ \frac{(1+ (2^\theta -1)(n-2))}{x_n^{1-\theta }} -\frac{n-1}{((n-1)x_n+ \sum _{\ell \ge n+1}x_\ell )^{1-\theta } }\Big ]\\&\ge \theta x_n^{\theta -1 }\Big [ {(1+ (2^\theta -1)(n+2))} -{(n-1)^{\theta } }\Big ]\ge 0\,, \end{aligned}$$

so that the minimum is attained in \(x_n= x_{n+1}\) and \(f(x_2,\dots ,x_N) \ge f_{n+1}(x_{n+1},\dots ,x_N)\). In conclusion

$$\begin{aligned} f(x_2,\dots ,x_N)\ge f(x_N,\dots ,x_N)\ge 0 \end{aligned}$$

where the last inequality follows by recalling that \( 1+(2^\theta -1)k - (k+1)^\theta \ge 0\) for \(k\ge 1\).

\(\square \)

The Lemma proved above, is fundamental in discussing the properties of \({{\mathcal {H}}}_{r}({\mathtt {h}}_{p,s,a})\) with \(s>0\), indeed it implies

$$\begin{aligned} \sum _i \langle i \rangle ^\theta ({ {\alpha }}_i+{ {\beta }}_i) -2\langle j \rangle ^\theta \ge (2-2^\theta ) {\left( \sum _{l\ge 3} \widehat{n}_l^\theta \right) } \ge 0 \end{aligned}$$
(39)

for all \({ {\alpha }},{ {\beta }}\) such that \({ {\alpha }}_j+{ {\beta }}_j\ne 0\). Indeed, this follows from the fact that \(\langle j \rangle \le \widehat{n}_1\).

Proof of Lemma 3.6

In all that follows we shall use systematically the fact that our Hamiltonians are momentum preserving, are zero at the origin and have no linear term so that \({\left| { {\alpha }}\right| } +{\left| { {\beta }}\right| } \ge 2\).

We need to show that

$$\begin{aligned} \frac{ c^{(j)}_{r,s+{\sigma }}({ {\alpha }},{ {\beta }})}{c^{(j)}_{r,s }({ {\alpha }},{ {\beta }})} = \exp (-{\sigma }(\sum _i \langle i \rangle ^\theta ({ {\alpha }}_i+{ {\beta }}_i) -2\langle j \rangle ^\theta ) \le 1\,. \end{aligned}$$
(40)

The first identity comes form (33), while the last inequality follows by (39) of Lemma A.5\(\square \)

1.2 Proof of Lemma 3.7

This is a rather classical result, the proof we give is taken from [BMP18], where it is stated under the extra hypothesis of mass conservation, which is not used in the proof.

Lemma A.6

Let \(0<r_1<r.\) Let E be a Banach space endowed with the norm \(|\cdot |_E\). Let \(X:B_r \rightarrow E\) a vector field satisfying

$$\begin{aligned} \sup _{B_r}|X|_E\le \delta _0\,. \end{aligned}$$

Then the flow \(\Phi (u,t)\) of the vector fieldFootnote 7 is well defined for every

$$\begin{aligned} |t|\le T:=\frac{r-r_1}{\delta _0} \end{aligned}$$

and \(u\in B_{r_1}\) with estimate

$$\begin{aligned} |\Phi (u,t)-u|_E\le \delta _0 |t|\,,\qquad \forall \, |t|\le T \,. \end{aligned}$$

Proof of Lemma 3.7

The estimate for the Poisson bracket is proven in [BBP13]. In order to prove the other estimates we use Lemma A.6, with \(E\rightarrow {\mathtt {h}}_{s}\), \(X\rightarrow X_S\), \(\delta _0\rightarrow (r+\rho ) |S|_{r+\rho },\) \(r\rightarrow r+\rho ,\) \(r_1\rightarrow r,\) \(T\rightarrow 8e.\) finally we do not write the dependence on s which is fixed.

Then the fact that the time 1-Hamiltonian flow \(\Phi ^1_S: B_r({\mathtt {h}}_{s}) \rightarrow B_{r + \rho }({\mathtt {h}}_{s})\) is well defined, analytic, symplectic follows, since

$$\begin{aligned} \sup _{u\in B_{r+\rho }({\mathtt {h}}_{s})} |X_S|_{{\mathtt {h}}_{s}} \le (r+\rho ) |S|_{r+\rho }<\frac{\rho }{8 e}\,. \end{aligned}$$

Regarding the estimate (22), again by Lemma A.6 (choosing \(t=1\)), we get

$$\begin{aligned} \sup _{u\in B_{r}({\mathtt {h}}_{s})} {\left| \Phi ^1_S(u)-u\right| } _{{\mathtt {h}}_{s}} \le (r+\rho ) |S|_{r+\rho } <\frac{\rho }{8 e} \,. \end{aligned}$$

Estimates (23), (24), (25) directly follow by (26) with \(h=0,1,2,\) respectively and \(c_k=1/k!\), recalling that by Lie series

$$\begin{aligned} H \circ \Phi ^1_S = e^\mathrm{ad_S} H = \sum _{k=0}^\infty \frac{ \mathrm{ad}_S^k H}{k!} = \sum _{k=0}^\infty \frac{ H^{(k)}}{k!}\,, \end{aligned}$$

where \( H^{(i)} := \mathrm{ad}_S^i (H)= \mathrm{ad}_S ( H^{(i-1)}) \), \( H^{(0)}:=H \).

Let us prove (26). Fix \(k\in {\mathbb N},\) \(k>0\) and set

$$\begin{aligned} r_i := r +\rho (1 - \frac{i}{k}) \, \, , \qquad i = 0,\ldots ,k \, . \end{aligned}$$

Note that, by the immersion properties of the norm in Lemma 3.5,

$$\begin{aligned} \Vert S\Vert _{r_i}\le \Vert S\Vert _{r+\rho }\,,\qquad \forall \, i = 0,\ldots ,k\,. \end{aligned}$$
(41)

Noting that

$$\begin{aligned} 1+\frac{k r_i}{\rho } \, \le k {\left( 1+\frac{r}{\rho }\right) }\,, \qquad \forall \, i=0,\ldots ,k\,, \end{aligned}$$
(42)

by using k times (20) we have

$$\begin{aligned}&\Vert {H^{(k)}}\Vert _r = \Vert \{S, {H^{(k-1)}}\} \Vert _r \le 4 (1+\frac{ k r}{\rho }) \Vert {H^{(k-1)}}\Vert _{r_{k-1}}\Vert S\Vert _{r_{k-1}}\\&\qquad \qquad {\mathop {\le }\limits ^{(42)}}\Vert H\Vert _{r+\rho } \Vert S\Vert _{r+\rho }^k 4^k \prod _{i=1}^k (1+\frac{ k r_i}{\rho }) {\mathop {\le }\limits ^{(43)}}\Vert H\Vert _{r+\rho } \left( 4k {\left( 1+\frac{r}{\rho }\right) }\Vert S\Vert _{r+\rho } \right) ^k \,. \end{aligned}$$

Then, using \( k^k\le e^k k!, \) we get

$$\begin{aligned} \left\| \sum _{k\ge h} c_k {H^{(k)}}\right\| _{r}\le & {} \sum _{k\ge h} |c_k| \Vert {H^{(k)}}\Vert _{r} \le \Vert H\Vert _{r+\rho } \sum _{k\ge h} \left( 4e {\left( 1+\frac{r}{\rho }\right) }\Vert S\Vert _{r+\rho } \right) ^k \\= & {} \Vert H\Vert _{r+\rho } \sum _{k\ge h} (\Vert S\Vert _{r+\rho }/2\delta )^k {\mathop {\le }\limits ^{(22)}}2 \Vert H\Vert _{r+\rho } (\Vert S\Vert _{r+\rho }/2\delta )^h\,. \end{aligned}$$

Finally, if S and H satisfy momentum conservation so does each \( \mathrm{ad}_S^k H \), \( k \ge 1 \), hence \( H \circ \Phi ^1_S \) too. \(\square \)

1.3 Proof of lemma 3.8

Here we strongly use the fact that \(\omega _j \sim j^2\). As we said in the introduction, it would not be hard to modify the proof in order to deal with \(\omega _j\sim j^\alpha \) with \(\alpha >1\), by adapting the proof of Lemmata A.9A.10.

By Lemma A.1 (2), we have

$$\begin{aligned} {\left\| L_\omega ^{-1} R\right\| }_{r,s+{\sigma }}\le \gamma ^{-1}K {\left\| R\right\| }_{r,s} \end{aligned}$$

where

$$\begin{aligned} K=\gamma \sup _{\begin{array}{c} j: { {\alpha }}_j+{ {\beta }}_j\ne 0\\ \pi ({\alpha },{\beta })=0 \end{array}} \frac{e^{-{\sigma }{\left( \sum _i\langle i \rangle ^\theta ({ {\alpha }}_i+{ {\beta }}_i) -2\langle j \rangle ^\theta \right) }}}{{\left| \omega \cdot {{\left( { {\alpha }}- { {\beta }}\right) }}\right| }}\,. \end{aligned}$$

Therefore proving (27) amounts to showing that

$$\begin{aligned} K \le e^{{{\mathcal {C}}}_1 {\sigma }^{-\frac{3}{\theta }}}\,. \end{aligned}$$
(43)

We divide in two cases regarding whether the inequality

$$\begin{aligned} {\left| \sum _i{{\left( { {\alpha }}_i-{ {\beta }}_i\right) }i^2}\right| }\le 2 \sum _i{\left| { {\alpha }}_i-{ {\beta }}_i\right| }\,, \end{aligned}$$
(44)

holds or not. We remark that

$$\begin{aligned} {\left| \sum _i{{\left( { {\alpha }}_i-{ {\beta }}_i\right) }i^2}\right| }\ge 2 \sum _i{\left| { {\alpha }}_i-{ {\beta }}_i\right| } \qquad \Longrightarrow \qquad {\left| \omega \cdot {\left( { {\alpha }}-{ {\beta }}\right) }\right| }\ge 1\,, \end{aligned}$$
(45)

indeed denoting \(\omega _j = j^2 + \xi _j \) with \({\left| \xi _j\right| }\le \frac{1}{2}\),

$$\begin{aligned} {\left| \omega \cdot {\left( { {\alpha }}-{ {\beta }}\right) }\right| } \ge 2\sum _j{\left| { {\alpha }}_j - { {\beta }}_j\right| } - \frac{1}{2}\sum _j{\left| { {\alpha }}_j - { {\beta }}_j\right| }\ge 1. \end{aligned}$$

Of course if \({\left| \omega \cdot {\left( { {\alpha }}-{ {\beta }}\right) }\right| }\ge 1\), by (39) and (40) we get

$$\begin{aligned} \gamma \frac{e^{-{\sigma }{\left( \sum _i\langle i \rangle ^\theta ({ {\alpha }}_i+{ {\beta }}_i) -2\langle j \rangle ^\theta \right) }}}{{\left| \omega \cdot {{\left( { {\alpha }}- { {\beta }}\right) }}\right| }} \le 1\, \end{aligned}$$

and the bound (43) is trivially achieved.

Otherwise, to deal with the case in which (44) holds, we need some notation. Given \(u\in \mathbb {Z}^\mathbb {Z}_f\), consider the set

$$\begin{aligned} M(u):={\left\{ j\ne 0 \,,\quad \text{ repeated }\quad {\left| u_j\right| } \;\text{ times }\right\} }\,, \end{aligned}$$

where \(D(u)<\infty \) is its cardinality. Define the vector \(m=m(u)\) as the reordering of the elements of the set above such that \(|m_1|\ge |m_2|\ge \dots \ge |m_D|\ge 1.\)

Given \({ {\alpha }}\ne { {\beta }}\in {\mathbb N}^\mathbb {Z}_f\) with \(|{ {\alpha }}|+|{ {\beta }}|\ge 3\) we consider \(m=m({ {\alpha }}-{ {\beta }})\) and \(\widehat{n}=\widehat{n}({ {\alpha }}+{ {\beta }}).\) If we denote by D the cardinality of m and N the one of \(\widehat{n}\) we have

$$\begin{aligned} D+{ {\alpha }}_0+{ {\beta }}_0\le N \end{aligned}$$
(46)

and

$$\begin{aligned} (|m_1|,\dots ,|m_D|,\underbrace{1,\;\dots \;,1}_{N-D\;\mathrm {times}} )\, \preceq \, {\left( \widehat{n}_1,\dots \widehat{n}_N\right) }\,. \end{aligned}$$
(47)

Example A.7

Let set \(v={\alpha }+\beta \) and \(u={\alpha }-\beta \) with

$$\begin{aligned} {\alpha }_{-5}=1, {\alpha }_{-2}=2, \alpha _0= 2,\alpha _4=1&\\ \beta _{-5}=1, \beta _{-3}=2, \beta _0=3,\beta _6=1&\\ \pi ({\alpha },\beta )=(-5)(1-1)+(-3)(-2)+(-2)(2)+4(1)+6(-1)=0&\\ v_{-5}=2,v_{-3}=2, v_{-2}=2, v_{0}=5, v_{4}=1, v_{6}=1&\\ u_{-5}=0,u_{-3}=-2, u_{-2}=2, u_{0}=-1, u_{4}=1, u_{6}=-1&\\ \widehat{n}(v)=(6, 5,5,4,3,3,2,2,1,1,1,1,1), N= 13(=\text {Card}({\hat{n}}))&\\ M(u)=\{-3, -3, -2, -2,4,6\}, m(u)=\{6,4, -3, -3, -2, -2\}, D(u)=6. \end{aligned}$$

Therefore, we have \(D(u)+\alpha _0+\beta _0=8\le 13=N({\hat{n}}(v))\). Hence, (46) holds.

Furthermore, \((6,4, 3, 3, 2, 2, 1,1,1,1,1,1,1)\le {\hat{n}}(v)\), that is (47).

Lemma A.8

(Lemma C.3 of [BMP18]). Assume that g defined on \(\mathbb {Z}\) is non negative, even and not decreasing on \({\mathbb N}.\) Then, if \({ {\alpha }}\ne { {\beta }}\),

$$\begin{aligned} \sum _{i\in \mathbb {Z}} g(i) |{ {\alpha }}_i-{ {\beta }}_i| \le 2g(m_1)+ \sum _{l\ge 3} g(\widehat{n}_l)\,. \end{aligned}$$
(48)

Proof

By definition of \(m({\alpha }-{\beta })\) and setting \( {\sigma }_l= \mathrm{sign}({ {\alpha }}_{m_l}-{ {\beta }}_{m_l})\,, \) we have

$$\begin{aligned} \sum _{i\in \mathbb {Z}} g(i) ({ {\alpha }}_i-{ {\beta }}_i)= & {} g(0)({ {\alpha }}_0-{ {\beta }}_0)+ \sum _{l\ge 1} {\sigma }_l g(m_l)\,. \end{aligned}$$
(49)

Hence

$$\begin{aligned} \sum _{i\in \mathbb {Z}} g(i) |{ {\alpha }}_i-{ {\beta }}_i|= & {} g(0)|{ {\alpha }}_0-{ {\beta }}_0|+ \sum _{l\ge 1} g(m_l) \\\le & {} g(1)({ {\alpha }}_0+{ {\beta }}_0)+ 2g(m_1)+ \sum _{l\ge 3} g(m_l) \end{aligned}$$

and (48) follows by (46) and (47). \(\square \)

By (49)

$$\begin{aligned} 0=\sum _{i\in \mathbb {Z}}{\left( { {\alpha }}_i-{ {\beta }}_i\right) }i = \sum _l {\sigma }_l m_l \end{aligned}$$
(50)

and

$$\begin{aligned} {\sum _i{{\left( { {\alpha }}_i-{ {\beta }}_i\right) }i^2}}= \sum _l {\sigma }_l m^2_l\,. \end{aligned}$$
(51)

Analogously

$$\begin{aligned} {\sum _i{{\left| { {\alpha }}_i-{ {\beta }}_i\right| }}} = D+|{ {\alpha }}_0-{ {\beta }}_0| {\mathop {\le }\limits ^{(47)}}N\,. \end{aligned}$$
(52)

Finally note that

$$\begin{aligned} \sigma _l\sigma _{l'} =-1\qquad \Longrightarrow \qquad m_l \ne m_{l'}\,. \end{aligned}$$
(53)

Lemma A.9

Given \({ {\alpha }}\ne { {\beta }}\in {\mathbb N}^\mathbb {Z}_f,\) such that \(\pi ({ {\alpha }}-{ {\beta }})=0\), \(N\ge 3,D\ge 1 \) and satisfying (44), we have

$$\begin{aligned} {\left| m_1\right| }\le 7\sum _{l\ge 3}\widehat{n}_l^2\,. \end{aligned}$$
(54)

Proof

The case \(D=1\) is not compatible with momentum conservation. Let us now consider the case \(D=2\), i.e.

$$\begin{aligned} { {\alpha }}-{ {\beta }}={\sigma }_1 \mathbf{e}_{m_1}+{\sigma }_2 \mathbf{e}_{m_2} +({ {\alpha }}_0-{ {\beta }}_0)\mathbf{e}_0\,. \end{aligned}$$

If \({\sigma }_1{\sigma }_2=-1\), momentum conservation imposes \(m_1=m_2\) but this contradicts (53). In the case \({\sigma }_1{\sigma }_2=1,\) by momentum conservation we have \(m_1= -m_2\). Then conditions (44) and (52) imply that

$$\begin{aligned} m_1^2 + m_2^2 \le 2 (D +|{ {\alpha }}_0-{ {\beta }}_0|) {\mathop {\le }\limits ^{(53)}} 2 N \le 6(N-2) \le 6 \sum _{l=3}^N \widehat{n}_l^2 \end{aligned}$$

since \(\widehat{n}_l\ge 1\).

Let us now consider the case \(D \ge 3\). By (44), (51) and (52)

$$\begin{aligned} m_1^2 +{\sigma }_1{\sigma }_2 m_2^2\le & {} 2(D+|{ {\alpha }}_0-{ {\beta }}_0|) + \sum _{l=3}^Dm_l^2 \le 2 N + \sum _{l=3}^Dm_l^2 \le 2 N + \sum _{l=3}^N\widehat{n}_l^2 {\le } 7\sum _{l=3}^N \widehat{n}_l^2\,. \end{aligned}$$

since (recall \(N\ge 3\)) \( 2 N\le 6(N-2) \le 6\sum _{l=3}^N \widehat{n}_l^2\).

If \(\sigma _1\sigma _2 = 1\) then

$$\begin{aligned} {\left| m_1\right| }, {\left| m_2\right| } \le \sqrt{7\sum _{l\ge 3} \widehat{n}_l^2}. \end{aligned}$$

If \({\sigma }_1{\sigma }_2 = -1\)

$$\begin{aligned} (|m_1|+|m_2|)(|m_1|-|m_2|)= m_1^2 - m_2^2 \le 7\sum _{l\ge 3} \widehat{n}_l^2. \end{aligned}$$

Now, if \({\left| m_1\right| }\ne {\left| m_2\right| }\) then

$$\begin{aligned} {\left| m_1\right| } + {\left| m_2\right| } \le 7\sum _{l\ge 3} \widehat{n}_l^2. \end{aligned}$$

Conversely, if \({\left| m_1\right| } = {\left| m_2\right| }\), by (53), \(m_1\ne m_2\), hence \(m_1 = - m_2\). By substituting this relation into (50), we have

$$\begin{aligned} 2{\left| m_1\right| } \le \sum _{l\ge 3}{\left| m_l\right| } \le \sum _{l\ge 3}\widehat{n}_l^2\,, \end{aligned}$$

concluding the proof. \(\square \)

Lemma A.10

Consider \({ {\alpha }},{ {\beta }}\in {{\mathcal {M}}}\) with \({\alpha }\ne {\beta }\) and \( |{\alpha }|+|{\beta }| \ge 3\). If (44) holds then

for all j such that \({ {\alpha }}_j+{ {\beta }}_j\ne 0\) one has

$$\begin{aligned} \sum _i{\left| { {\alpha }}_i-{ {\beta }}_i\right| }\langle i \rangle ^{\theta /2} \le C_* {\left( \sum _i {\left( { {\alpha }}_i+{ {\beta }}_i\right) }\langle i \rangle ^\theta - 2\langle j \rangle ^\theta \right) }\,, \qquad C_*= \frac{7}{2-2^\theta } \end{aligned}$$
(55)

Proof

Let us first consider the case \(D=0\), this means that \({\alpha }-{\beta }= ({\alpha }_0-{\beta }_0)\mathbf{e}_0\) and the left hand side of (55) reads \( |{\alpha }_0-{\beta }_0|\). By (39) and \(N\ge 3\) the right hand side of (55) is at least \(2-2^\theta \), so if \(|{\alpha }_0-{\beta }_0| \le 7 \) the result is trivial. Otherwise we have two cases, if \(j=0\)

$$\begin{aligned} |{\alpha }_0-{\beta }_0| \le 2(|{\alpha }_0-{\beta }_0| -2\langle j \rangle ^\theta ) \le 2 {\left( \sum _i {\left( { {\alpha }}_i+{ {\beta }}_i\right) }\langle i \rangle ^\theta - 2\langle j \rangle ^\theta \right) }\,, \end{aligned}$$

Otherwise we remark that if \(j\ne 0\), \({\alpha }_j+{\beta }_j\ne 0\) and \({\alpha }_j-{\beta }_j=0\), then \({\alpha }_j+{\beta }_j \ge 2\), then

$$\begin{aligned} |{\alpha }_0-{\beta }_0| \le ({\alpha }_0+{\beta }_0) + ({\alpha }_j+{\beta }_j -2) \langle j \rangle ^\theta \le \sum _i {\left( { {\alpha }}_i+{ {\beta }}_i\right) }\langle i \rangle ^\theta - 2\langle j \rangle ^\theta \,. \end{aligned}$$

Now we consider indices \({\alpha },{\beta }\) such that \(N\ge 3,D\ge 1 \). Here we apply Lemma A.9 Given \({ {\alpha }},{ {\beta }}\in {\mathbb N}^\mathbb {Z}_f,\) as above we consider \(m=m({ {\alpha }}-{ {\beta }})\) and \(\widehat{n}=\widehat{n}({ {\alpha }}+{ {\beta }}).\)

We haveFootnote 8

$$\begin{aligned}&\sum _i{\left| { {\alpha }}_i-{ {\beta }}_i\right| }\langle i \rangle ^{\theta /2} {\mathop {\le }\limits ^{(49)}}2{\left| m_1\right| }^{\frac{\theta }{2}} + \sum _{l\ge 3} \widehat{n}_l^{\frac{\theta }{2}} \nonumber \\&\qquad \qquad \qquad \qquad \qquad {\mathop {\le }\limits ^{(55)}}2{\left( 7 \sum _{l\ge 3} \widehat{n}_l^2 \right) }^{\frac{\theta }{2}} + \sum _{l\ge 3} \widehat{n}_l^{\frac{\theta }{2}}\nonumber \\&\qquad \qquad \qquad \qquad \qquad \le + 2(7)^{\frac{\theta }{2}}\sum _{l\ge 3}\widehat{n}_l^\theta + \sum _{l\ge 3} \widehat{n}_l^{\frac{\theta }{2}} \nonumber \\&\qquad \qquad \qquad \qquad \qquad \le \frac{2\sqrt{7}+1}{2-2^\theta }{\left( (2-2^\theta ){\left( \sum _{l\ge 3}\widehat{n}_l^\theta \right) }\right) }\,, \end{aligned}$$
(56)

Then by Lemma A.5 and (56) we get

$$\begin{aligned} \sum _i{\left| { {\alpha }}_i-{ {\beta }}_i\right| }\langle i \rangle ^{\theta /2}\le & {} \frac{7 }{2-2^\theta }{\left( \sum _i \langle i \rangle ^\theta {\left( { {\alpha }}_i +{ {\beta }}_i\right) } - 2\widehat{n}_1^\theta \right) }\\\le & {} \frac{7 }{2-2^\theta } {\left[ \sum _i \langle i \rangle ^\theta {\left( { {\alpha }}_i +{ {\beta }}_i\right) } - 2\langle j \rangle ^\theta \right] }\,, \end{aligned}$$

proving (55). \(\square \)

Conclusion of the proof of Lemma 3.8 By applying Lemma A.10, since \(\omega \in {\mathtt {D}_\gamma }\) we get:

$$\begin{aligned}&\gamma \frac{e^{-{\sigma }{\left( \sum _i\langle i \rangle ^\theta ({ {\alpha }}_i+{ {\beta }}_i) -2\langle j \rangle ^\theta \right) }}}{{\left| \omega \cdot {{\left( { {\alpha }}- { {\beta }}\right) }}\right| }} {\mathop {\le }\limits ^{(4)}} e^{-{\sigma }{\left( \sum _i\langle i \rangle ^\theta ({ {\alpha }}_i+{ {\beta }}_i) -2\langle j \rangle ^\theta \right) }} \prod _i{\left( 1+({ {\alpha }}_i-{ {\beta }}_i)^{2}\langle i \rangle ^{{2}}\right) }\nonumber \\&{\mathop {\le }\limits ^{(56)}} e^{-\frac{{\sigma }}{C_* }\sum _i{\left| { {\alpha }}_i-{ {\beta }}_i\right| }\langle i \rangle ^{\frac{\theta }{2}}}\prod _i{\left( 1+({ {\alpha }}_i-{ {\beta }}_i)^{2}\langle i \rangle ^{{2}}\right) } \nonumber \\&\le \exp {\sum _i{\left[ -\frac{{\sigma }}{C_*} {\left| { {\alpha }}_i - { {\beta }}_i\right| }\langle i \rangle ^{\frac{\theta }{2}} + \ln {{\left( 1 + {\left( { {\alpha }}_i - { {\beta }}_i\right) }^{2}\langle i \rangle ^{{2}}\right) }}\right] }} \nonumber \\&= \exp {\sum _i f_i({\left| { {\alpha }}_i-{ {\beta }}_i\right| })} \end{aligned}$$
(57)

where, for \(0<{\sigma }\le 1\), \(i\in \mathbb {Z}\) and \(x\ge 0\), we defined

$$\begin{aligned} f_i(x) := -\frac{{\sigma }}{C_*} x\langle i \rangle ^{\frac{\theta }{2}} + \ln {{\left( 1 + x^{2}\langle i \rangle ^{{2}}\right) }}\,. \end{aligned}$$

\(\square \)

Finally, we have

Lemma A.11

(Lemma 7.2 of [BMP18]) Setting

$$\begin{aligned} i_\sharp := \left( \frac{24C_*}{{\sigma }\theta } \ln \frac{12C_*}{{\sigma }\theta } \right) ^{\frac{2}{\theta }}\,, \end{aligned}$$

we get

$$\begin{aligned} \sum _i f_i(|\ell _i|)\le 18 i_\sharp \ln i_\sharp \end{aligned}$$
(58)

for every \(\ell \in \mathbb {Z}^\mathbb {Z}_f\).

Proof

First of all we note that

$$\begin{aligned} \sum _i f_i(|\ell _i|)= \sum _{i\ \text {s.t.} \ \ell _i\ne 0} f_i(|\ell _i|) \end{aligned}$$

since \(f_i(0)=0.\) We have thatFootnote 9

$$\begin{aligned} f_i(x) \le -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}}x + {2} \ln (x)+ 2\ln \langle i \rangle +1\,,\qquad \forall \, x\ge 1\,. \end{aligned}$$

Now,

$$\begin{aligned} \max _{x\ge 1} \left( -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}}x + 2 \ln (x)\right) = \left\{ \begin{array}{l} \displaystyle -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}} \qquad \qquad \qquad \ \,\qquad \text {if}\quad \langle i \rangle \ge i_0\,, \\ \\ \displaystyle -{2}+{2}\ln \frac{2C_* }{{\sigma }}-\theta \ln \langle i \rangle \qquad \text {if}\quad \langle i \rangle < i_0\,, \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} i_0:=\left( \frac{2C_* }{{\sigma }}\right) ^{\frac{2}{\theta }}\,, \end{aligned}$$

since the maximum is achieved for \(x=1\) if \(\langle i \rangle \ge i_0\) and \(x=\frac{2C_* }{{\sigma }\langle i \rangle ^{\theta /2}}\) if \(\langle i \rangle < i_0\). Note that \(i_0\ge e.\) Then we get

$$\begin{aligned}&\sum _i f_i(|\ell _i|) = \sum _{i\ \text {s.t.} \ \ell _i\ne 0} f_i(|\ell _i|) \\&\quad \le \sum _{\langle i \rangle \ge i_0\ \text {s.t.} \ \ell _i\ne 0} \left( 2\ln \langle i \rangle +1 -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}} \right) + \sum _{\langle i \rangle < i_0} \left( 2\ln \frac{2C_* }{{\sigma }}+\Big (2 -\theta \Big ) \ln \langle i \rangle \right) \,. \end{aligned}$$

We immediately have that

$$\begin{aligned} \sum _{\langle i \rangle < i_0} \left( 2\ln \frac{2C_* }{{\sigma }}+\Big ({2} -\theta \Big ) \ln \langle i \rangle \right)\le & {} 6 i_0 \left( \ln \frac{2C_* }{{\sigma }}+ \ln i_0 \right) \\= & {} 6\left( 1+ \frac{2}{\theta }\right) \left( \frac{2C_* }{{\sigma }}\right) ^{\frac{2}{\theta }} \ln \frac{2C_* }{{\sigma }}\,. \end{aligned}$$

Moreover, in the case \(\langle i \rangle \ge i_0\ge e,\)

$$\begin{aligned} 2\ln \langle i \rangle +1 -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}} \le 3\ln \langle i \rangle -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}} =\frac{6}{\theta }\Big ( \ln \langle i \rangle ^{\frac{\theta }{2}}-{2\mathfrak {C} } \langle i \rangle ^{\frac{\theta }{2}} \Big ) \end{aligned}$$

where

$$\begin{aligned} {\mathfrak C }:=\frac{\theta {\sigma }(2-2^\theta )}{84 }<1 \,. \end{aligned}$$

We have thatFootnote 10

$$\begin{aligned} \ln \langle i \rangle ^{\frac{\theta }{2}}-2{\mathfrak C} \langle i \rangle ^{\frac{\theta }{2}} \le -{\mathfrak C} \langle i \rangle ^{\frac{\theta }{2}}\,, \qquad \text {when}\qquad \langle i \rangle \ge i_*:= \left( \frac{2}{{\mathfrak C}}\ln \frac{1}{{\mathfrak C}}\right) ^{\frac{2}{\theta }} \,. \end{aligned}$$

Note that

$$\begin{aligned} i_\sharp \ge \max \{ i_0, i_*\}\,. \end{aligned}$$

Therefore

$$\begin{aligned}&\sum _{\langle i \rangle \ge i_0\ \text {s.t.} \ \ell _i\ne 0}{\left( 2\ln \langle i \rangle +1 -\frac{{\sigma }}{C_* }\langle i \rangle ^{\frac{\theta }{2}}\right) } \le \sum _{\langle i \rangle \ge i_0\ \text {s.t.} \ \ell _i\ne 0} \frac{6}{\theta }{\left( \ln \langle i \rangle ^{\frac{\theta }{2}}-{2\mathfrak C } \langle i \rangle ^{\frac{\theta }{2}}\right) } \\&\qquad \quad \quad \le \frac{6}{\theta } \left( \sum _{\langle i \rangle <i_\sharp } \ln \langle i \rangle ^{\frac{\theta }{2}} - \sum _{\langle i \rangle \ge i_\sharp \ \text {s.t.} \ \ell _i\ne 0} \Big ( {\mathfrak C} \langle i \rangle ^{\frac{\theta }{2}} \Big ) \right) \le 9 i_\sharp \ln i_\sharp \,. \end{aligned}$$

In conclusion we get

$$\begin{aligned} \sum _i f_i(|\ell _i|)\le & {} 6\frac{2+\theta }{\theta }\left( \frac{2C_* }{{\sigma }}\right) ^{\frac{2}{\theta }} \ln \frac{2C_* }{{\sigma }} + 9 i_\sharp \ln i_\sharp \\\le & {} 9 \left( \frac{2C_* }{{\sigma }\theta }\right) ^{\frac{2}{\theta }} \ln {\left( \frac{2C_* }{{\sigma }}\right) }^{\frac{\theta }{2}} + 9 i_\sharp \ln i_\sharp \le 18 i_\sharp \ln i_\sharp \end{aligned}$$

\(\square \)

The inequality (27) follows from plugging (58) into (57) and evaluating the constant. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procesi, M., Stolovitch, L. About Linearization of Infinite-Dimensional Hamiltonian Systems. Commun. Math. Phys. 394, 39–72 (2022). https://doi.org/10.1007/s00220-022-04398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04398-7

Navigation