Skip to main content
Log in

Entanglement Subvolume Law for 2D Frustration-Free Spin Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let H be a frustration-free Hamiltonian describing a 2D grid of qudits with local interactions, a unique ground state, and local spectral gap lower bounded by a positive constant. For any bipartition defined by a vertical cut of length L running from top to bottom of the grid, we prove that the corresponding entanglement entropy of the ground state of H is upper bounded by \({\tilde{O}}(L^{5/3})\). For the special case of a 1D chain, our result provides a new area law which improves upon prior work, in terms of the scaling with qudit dimension and spectral gap. In addition, for any bipartition of the grid into a rectangular region A and its complement, we show that the entanglement entropy is upper bounded as \({\tilde{O}}(|\partial A|^{5/3})\) where \(\partial A\) is the boundary of A. This represents a subvolume bound on entanglement in frustration-free 2D systems. In contrast with previous work, our bounds depend on the local (rather than global) spectral gap of the Hamiltonian. We prove our results using a known method which bounds the entanglement entropy of the ground state in terms of certain properties of an approximate ground state projector (AGSP). To this end, we construct a new AGSP which is based on a robust polynomial approximation of the AND function and we show that it achieves an improved trade-off between approximation error and entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Fact 2.1 is obtained from Lemma 4.1 of Ref. [8] by setting \(\epsilon _0=0, \epsilon _1=g, u=1, \ell =f\).

  2. We can always form a new Hamiltonian \(H'\) on an \(n'\times L\) grid for any \(n'>n\) which has (a) the same local spectral gap \(\gamma \) as H, and (b) a unique ground state \(|\Omega \rangle \otimes |0^{(n'-n)L}\rangle \) and therefore exactly the same entanglement entropy across the given cut. \(H'\) is obtained from H by adding new local projectors which act on all the newly added plaquettes of the lattice. For each plaquette with \(q<4\) old qudits from the original lattice and \(4-q\) new qudits, we add the projector \(I^{\otimes q}\otimes (I-|0\rangle \langle 0|^{\otimes 4-q})\) to the Hamiltonian.

  3. Recall from elementary combinatorics that the number of p-tuples of non-negative integers \((c_1, c_2, \ldots , c_p)\) such that \(\sum _{j=1}^{p} c_j \le q\) is equal to \({p+q \atopwithdelims ()p}\).

References

  1. Abdul-Rahman, H., Lemm, M., Lucia, A., Nachtergaele, B., Young, A.: A class of two-dimensional AKLT models with a gap. arXiv preprint. arXiv:1901.09297 (2019)

  2. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987)

    Article  ADS  Google Scholar 

  3. Aharonov, D., Arad, I., Landau, Z., Vazirani, U.: The detectability lemma and quantum gap amplification. In: Proceedings of STOC ’09, pp. 417–426. ACM, New York (2009)

  4. Aharonov, D., Arad, I., Vazirani, U., Landau, Z.: The detectability lemma and its applications to quantum Hamiltonian complexity. New J. Phys. 13(11), 113043 (2011)

    Article  ADS  Google Scholar 

  5. Aharonov, D., Harrow, A.W., Landau, Z., Nagaj, D., Szegedy, M., Vazirani, U.: Local tests of global entanglement and a counterexample to the generalized area law. In: Proceedings of FOCS ’14, pp. 246–255. IEEE (2014)

  6. Alcaraz, F.C., Salinas, S.R., Wreszinski, W.F.: Anisotropic ferromagnetic quantum domains. Phys. Rev. Lett. 75, 930–933 (1995)

    Article  ADS  Google Scholar 

  7. Anshu, A., Arad, I., Vidick, T.: Simple proof of the detectability lemma and spectral gap amplification. Phys. Rev. B 93, 205142 (2016)

    Article  ADS  Google Scholar 

  8. Arad, I., Kitaev, A., Landau, Z., Vazirani, U.: An area law and sub-exponential algorithm for 1D systems. arXiv preprint. arXiv: 1301.1162 (2013)

  9. Arad, I., Landau, Z., Vazirani, U.: An improved 1D area law for frustration-free systems. Phys. Rev. B. 85, 1–15 (2012)

    Article  Google Scholar 

  10. Arad, I., Landau, Z., Vazirani, U., Vidick, T.: Rigorous RG algorithms and area laws for low energy eigenstates in 1D. Commun. Math. Phys. 356(1), 65–105 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Audenaert, K., Eisert, J., Plenio, M., Werner, R.: Entanglement properties of the harmonic chain. Phys. Rev. A 66(4), 042327 (2002)

    Article  ADS  Google Scholar 

  12. Bausch, J., Cubitt, T., Lucia, A., Perez-Garcia, D.: Undecidability of the spectral gap in one dimension. arXiv preprint. arXiv:1810.01858 (2018)

  13. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333–2346 (1973)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Quantum source of entropy for black holes. Phys. Rev. D 34, 373–383 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Brandão, F.G.S.L., Cramer, M.: Entanglement area law from specific heat capacity. Phys. Rev. B 92, 115134 (2015)

    Article  ADS  Google Scholar 

  16. Brandão, F.G.S.L., Horodecki, M.: An area law for entanglement from exponential decay of correlations. Nat. Phys. 9, 721–726 (2013)

    Article  Google Scholar 

  17. Bravyi, S.: Efficient algorithm for a quantum analogue of 2-SAT. Contemp. Math. 536, 33–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bravyi, S., Caha, L., Movassagh, R., Nagaj, D., Shor, P.W.: Criticality without frustration for quantum spin-1 chains. Phys. Rev. Lett. 109, 207202 (2012)

    Article  ADS  Google Scholar 

  19. Callan, C., Wilczek, F.: On geometric entropy. Phys. Lett. B 333(1–2), 55–61 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  20. Cho, J.: Sufficient condition for entanglement area laws in thermodynamically gapped spin systems. Phys. Rev. Lett. 113, 197204 (2014)

    Article  ADS  Google Scholar 

  21. Cubitt, T.S., Perez-Garcia, D., Wolf, M.M.: Undecidability of the spectral gap. Nature 528, 207–211 (2015)

    Article  ADS  Google Scholar 

  22. de Beaudrap, N., Osborne, T.J., Eisert, J.: Ground states of unfrustrated spin Hamiltonians satisfy an area law. New J. Phys. 12(9), 095007 (2010)

    Article  MATH  Google Scholar 

  23. Eisert, J., Plenio, M., Cramer, M.: Area laws for the entanglement entropy: a review. Rev. Mod. Phys. 82, 277–306 (2008)

    Article  MATH  ADS  Google Scholar 

  24. Gottstein, C.T., Werner, R.F.: Ground states of the infinite q-deformed Heisenberg ferromagnet. arXiv preprint. arXiv:cond-mat/9501123 (1995)

  25. Gosset, D., Huang, Y.: Correlation length versus gap in frustration-free systems. Phys. Rev. Lett. 116, 097202 (2016)

    Article  ADS  Google Scholar 

  26. Gosset, D., Mozgunov, E.: Local gap threshold for frustration-free spin systems. J. Math. Phys. 57(9), 091901 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Hastings, M.B.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69(10), 104431 (2004)

    Article  ADS  Google Scholar 

  28. Hastings, M.B.: An area law for one dimensional quantum systems. J. Stat. Mech., P08024 (2007)

  29. Hastings, M.B., Koma, T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265(3), 781–804 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nucl. Phys. B 424(3), 443–467 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436(7051), 673–676 (2005)

    Article  ADS  Google Scholar 

  33. Kabat, D., Strassler, M.: A comment on entropy and area. Phys. Lett. B 329(1), 46–52 (1994)

    Article  ADS  Google Scholar 

  34. Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Klumper, A., Schadschneider, A., Zittartz, J.: Equivalence and solution of anisotropic spin-1 models and generalized tJ fermion models in one dimension. J. Phys. A 24(16), L955 (1991)

    Article  ADS  Google Scholar 

  36. Klümper, A., Schadschneider, A., Zittartz, J.: Groundstate properties of a generalized VBS-model. Z. Phys. B 87(3), 281–287 (1992)

    Article  ADS  Google Scholar 

  37. Knabe, S.: Energy gaps and elementary excitations for certain VBS-quantum antiferromagnets. J. Stat. Phys. 52(3), 627–638 (1988)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Koma, T., Nachtergaele, B.: The spectral gap of the ferromagnetic XXZ-chain. Lett. Math. Phys. 40(1), 1–16 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Landau, Z., Vazirani, U., Vidick, T.: A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians. Nat. Phys. 11, 566–569 (2015)

    Article  Google Scholar 

  40. Latorre, J.I., Rico, E., Vidal, G.: Ground state entanglement in quantum spin chains. Quantum Inf. Comput. 4, 48–92 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Lemm, M.: Finite-size criteria for spectral gaps in d-dimensional quantum spin systems. arXiv preprint. arXiv:1902.07141 (2019)

  42. Lemm, M., Mozgunov, E.: Spectral gaps of frustration-free spin systems with boundary. arXiv preprint. arXiv:1801.08915 (2018)

  43. Levin, M.A., Wen, X.-G.: String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005)

    Article  ADS  Google Scholar 

  44. Lieb, E., Robinson, D.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  45. Masanes, L.: Area law for the entropy of low-energy states. Phys. Rev. A 80, 052104 (2009)

    Article  ADS  Google Scholar 

  46. Michalakis, S.: Stability of the area law for the entropy of entanglement. arXiv preprint. arXiv:1206.6900 (2012)

  47. Movassagh, R., Shor, P.W.: Supercritical entanglement in local systems: counterexample to the area law for quantum matter. Proc. Natl. Acad. Sci. U.S.A. 113(47), 13278–13282 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Nachtergaele, B., Sims, R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265(1), 119–130 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Perez-Garcia, D., Verstraete, F., Wolf, M.M., Cirac, J.I.: Peps as unique ground states of local Hamiltonians. Quantum Inf. Comput. 8(6), 650–663 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Schuch, N., Cirac, I., Perez-Garcia, D.: Peps as ground states: degeneracy and topology. Ann. Phys. 325(10), 2153–2192 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Sherstov, A.A.: Making polynomials robust to noise. In: Proceedings of STOC ’12, pp. 747–758. ACM, New York (2012)

  52. Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71(5), 666 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. Terhal, B.M.: Is entanglement monogamous? IBM J. Res. Dev. 48(1), 71–78 (2004)

    Article  Google Scholar 

  54. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  55. White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345–10356 (1993)

    Article  ADS  Google Scholar 

  56. Wolf, M.M., Verstraete, F., Hastings, M.B., Cirac, J.I.: Area laws in quantum systems: mutual information and correlations. Phys. Rev. Lett. 100, 070502 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  57. Zhang, Z., Klich, I.: Entropy, gap and a multi-parameter deformation of the Fredkin spin chain. J. Phys. A 50(42), 425201 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

DG thanks Justin Thaler for helpful discussions about polynomials. IA acknowledges the support of the Israel Science Foundation (ISF) under the Individual Research Grant No. 1778/17. This work was done when AA was affiliated with the Institute for Quantum Computing, University of Waterloo, Canada, Department of Combinatorics and Optimization, University of Waterloo, Canada and Perimeter Institute for Theoretical Physics, Canada. AA was supported by the Canadian Institute for Advanced Research, through funding provided to the Institute for Quantum Computing by the Government of Canada and the Province of Ontario. Perimeter Institute is also supported in part by the Government of Canada and the Province of Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Anshu.

Ethics declarations

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Communicated by M. Christandl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Robust AND Polynomial

We now provide a proof of Theorem 2.2, following Ref. [51].

Proof of Theorem 2.2

For \(t\in \mathbbm {R}{\setminus }{\{0\}}\) let \(\mathrm {sign}(t)=t/|t|\) denote the sign of t. We may equivalently write

$$\begin{aligned} \mathrm {sign}(t)=\frac{t}{\sqrt{1+(t^2-1)}}, \end{aligned}$$

and we may then use the binomial series to expand the denominator (see, e.g., Eq. 3.2 of [51]). This gives the following series expansion which converges for \(0<|t|< \sqrt{2}\)

$$\begin{aligned} \mathrm {sign}(t)=t\sum _{i=0}^{\infty } \left( -\frac{1}{4}\right) ^i {2i\atopwithdelims ()i} \left( t^2-1 \right) ^i \qquad \quad 0<|t|< \sqrt{2}. \end{aligned}$$
(82)

Now consider the following robust function for the Boolean monomial:

$$\begin{aligned} \mathrm {int}(x) = \frac{1+\mathrm {sign}(2x-1)}{2} = {\left\{ \begin{array}{ll} 1 &{} \text { if } x>\frac{1}{2}\\ 0 &{} \text { if } x< \frac{1}{2} \end{array}\right. } \end{aligned}$$

Define

$$\begin{aligned} S=\left\{ x\in \mathbbm {R}: 0<|2x-1| < \sqrt{2}\right\} . \end{aligned}$$

For \(x\in S\) we may use Eq. (82) and separate out the \(i=0\) term to express \(\mathrm {int}(x)\) as

$$\begin{aligned} \mathrm {int}(x) =x+\frac{2x-1}{2}\sum _{i=1}^{\infty } {2i\atopwithdelims ()i} \left( x(1-x) \right) ^i=\sum _{i=0}^{\infty } A_i(x) \end{aligned}$$

where we define polynomials

$$\begin{aligned} A_0(x){\mathop {=}\limits ^{\mathrm {def}}}x \quad \text {and} \quad A_{i}(x) {\mathop {=}\limits ^{\mathrm {def}}}\frac{2x-1}{2}{2i\atopwithdelims ()i} \left( x(1-x) \right) ^i \text { for } i\ge 1. \end{aligned}$$

Observe that \(A_i\) has real coefficients and degree \(2i+1\), for all \(i\ge 0\). For \((x_1, x_2, \ldots x_m) \in S^m\),

$$\begin{aligned} \mathrm {int}(x_1)\cdot \mathrm {int}(x_2)\ldots \mathrm {int}(x_m)&= \sum _{i_1, i_2, \ldots i_m} A_{i_1}(x_1)A_{i_2}(x_2)\ldots A_{i_m}(x_m)\nonumber \\&=\sum _{n=0}^{\infty }\sum _{i_1, i_2, \ldots i_m: i_1+\cdots + i_m=n} A_{i_1}(x_1)A_{i_2}(x_2)\ldots A_{i_m}(x_m)\nonumber \\&{\mathop {=}\limits ^{\mathrm {def}}}\sum _{n=0}^{\infty } \xi _{n}(x_1, \ldots x_m). \end{aligned}$$
(83)

Below we shall establish the following claim:

Claim A.1

For \((x_1, x_2,\ldots x_m)\in \left( \left[ -\frac{1}{20}, \frac{1}{20} \right] \cup [1-1/20,1+1/20] \right) ^m\),

$$\begin{aligned} |\xi _n(x_1, x_2, \ldots x_m)| \le 3^m \left( \frac{3}{5} \right) ^n. \end{aligned}$$

Let us define the robust polynomial \(p_{AND}\) by truncating the sum in Eq. (83) to \(n\le 5m\):

$$\begin{aligned} p_{AND}(x_1, \ldots x_m) {\mathop {=}\limits ^{\mathrm {def}}}\sum _{n=0}^{5m} \xi _{n}(x_1, \ldots x_m). \end{aligned}$$
(84)

Since each \(A_i\) is a univariate polynomial with real coefficients and degree \(2i+1\), \(p_{AND}\) has real coefficients and degree

$$\begin{aligned} \mathrm {max}_{i_1+i_2+\cdots i_m \le 5m} \left( (2i_1+1)+(2i_2+1)+\cdots (2i_m+1) \right) = 2(5m) + m = 11m. \end{aligned}$$
(85)

In addition,

$$\begin{aligned} p_{AND}(1,1,\ldots 1) = \sum _{n=0}^{5m} \xi _{n}(1,1 \ldots 1) = \xi _0(1,1,\ldots 1) =1, \end{aligned}$$
(86)

where we used the identity \(A_i(1)=0\) for \(i\ge 1\) and \(A_0(1)=1\). Finally, suppose \(x=(x_1,x_2,\ldots , x_m)=y+\epsilon \) where \(y\in \{0,1\}^m\) and \(\epsilon \in [-1/20, 1/20]^m\). Then for each \(1\le i\le m\) we have

$$\begin{aligned} x_i\in [-1/20,1/20]\cup [1-1/20, 1+1/20] \subset S \end{aligned}$$

and

$$\begin{aligned} |p_{AND}(y+\epsilon ) - y_1y_2\ldots y_m|=|p_{AND}(x_1,x_2,\ldots , x_m)-\mathrm {int}(x_1)\mathrm {int}(x_2)\ldots \mathrm {int}(x_m)|. \end{aligned}$$

Using Eqs. (83, 84) and the triangle inequality to bound the right-hand side gives

$$\begin{aligned} |p_{AND}(y+\epsilon ) - y_1y_2\ldots y_m|&\le \sum _{n=5m+1}^{\infty } |\xi _{n}(x_1, \ldots x_m)|\\&\le 3^m\sum _{n=5m+1}^{\infty } \left( \frac{3}{5} \right) ^n\\&=3^m \left( \frac{3}{5}\right) ^{5m} \cdot \frac{3}{2}\\&\le \left( 3\cdot (3/5)^5\cdot (3/2)\right) ^m. \end{aligned}$$

Noting that \(3\cdot (3/5)^5\cdot (3/2)\le e^{-1}\) we arrive at Eq. (7) and complete the proof. \(\square \)

Proof of Claim A.1

Define \(J=[-1/20,1/20]\cup [1-1/20, 1+1/20]\) and note that for all \(i\ge 1\) we have

$$\begin{aligned} \mathrm {max}_{x\in J}|A_i(x)| = {2i\atopwithdelims ()i}\mathrm {max}_{x\in J}\left| \frac{2x-1}{2} \left( x(1-x) \right) ^i\right| \le 4^i\cdot \left( \frac{1}{20}\right) ^i\left( \frac{21}{20}\right) ^i \le \left( \frac{21}{100} \right) ^i, \end{aligned}$$
(87)

where we used the fact that \({2i\atopwithdelims ()i}\le 4^i\), \(\mathrm {max}_{x\in J} |\frac{2x-1}{2}|\le 1\), and \(\mathrm {max}_{x\in J}|x(1-x)|\le (1/20)(21/20)\). Furthermore,

$$\begin{aligned} \mathrm {max}_{x\in J}|A_0(x)| = \mathrm {max}_{x\in J}|x| \le \frac{21}{20}. \end{aligned}$$
(88)

Combining Eqs. (87, 88) we see that for all \(i\ge 0\),

$$\begin{aligned} \mathrm {max}_{x\in J}|A_i(x)| \le \left( \frac{21}{20}\right) \left( \frac{21}{100} \right) ^i. \end{aligned}$$
(89)

Consequently, for \((x_1, \ldots x_m)\in J^m\), using the definition of \(\xi _n\) and the triangle inequality, we get

$$\begin{aligned} |\xi _n(x_1, \ldots x_m)|&\le \sum _{i_1, i_2, \ldots i_m: i_1+\cdots i_m=n} \left| A_{i_1}(x_1)A_{i_2}(x_2)\ldots A_{i_m}(x_m)\right| \nonumber \\&\le \left( \frac{21}{20}\right) ^m \sum _{i_1, i_2, \ldots i_m: i_1+\cdots i_m=n} \left( \frac{21}{100} \right) ^{i_1+i_2+\cdots i_m} \end{aligned}$$
(90)
$$\begin{aligned}&= \left( \frac{21}{20}\right) ^m \left( \frac{21}{100}\right) ^n {m+n-1 \atopwithdelims ()n-1}. \end{aligned}$$
(91)

where we used Eq. (89) and the fact that the number of tuples \((i_1,i_2,\ldots , i_m)\) of nonnegative integers satisfying \(i_1+i_2+\cdots +i_m=n\) is given by \({m+n-1 \atopwithdelims ()n-1}\). Finally, we substitute the bound \({m+n-1 \atopwithdelims ()n-1}\le 2^{m+n}\) into Eq. (91) to arrive at

$$\begin{aligned} |\xi _n(x_1, \ldots x_m)|\le \left( \frac{42}{20}\right) ^m \left( \frac{42}{100}\right) ^n\le 3^m (3/5)^n. \end{aligned}$$

\(\square \)

Proof of Lemma 3.1

Fig. 4
figure 4

The local projectors can be divided into 4 groups, where the projectors in each group commute with each other.

The proof is similar to that given in [7], which uses a Chebyshev polynomial function of the detectability operator, as suggested in [25]. The projectors \(\{P_{ij}\}\) can be divided into 4 groups as follows (see Fig. 4), with the property that the projectors in each group commute with each other:

$$\begin{aligned}&{\mathcal {G}}_1{\mathop {=}\limits ^{\mathrm {def}}}\{P_{ij}: i=\mathrm {odd}, j=\mathrm {odd}\}, \quad {\mathcal {G}}_2{\mathop {=}\limits ^{\mathrm {def}}}\{P_{ij}: i=\mathrm {even}, j=\mathrm {odd}\},\\&{\mathcal {G}}_3{\mathop {=}\limits ^{\mathrm {def}}}\{P_{ij}: i=\mathrm {odd}, j=\mathrm {even}\}, \quad {\mathcal {G}}_4{\mathop {=}\limits ^{\mathrm {def}}}\{P_{ij}: i=\mathrm {even}, j=\mathrm {even}\}. \end{aligned}$$

We also define

$$\begin{aligned} DL_k&{\mathop {=}\limits ^{\mathrm {def}}}&\prod _{P_{ij}\in {\mathcal {G}}_k} \left( \mathbbm {1}-P_{ij} \right) , \qquad \quad 1\le k\le 4, \end{aligned}$$
(92)

and define \(DL {\mathop {=}\limits ^{\mathrm {def}}}DL_4\cdot DL_3\cdot DL_2\cdot DL_1\). From [7, Corollary 3], it holds that for any \(\psi \) satisfying \(\langle \psi |\Omega \rangle =0\), we have

$$\begin{aligned} \Vert DL \left| \psi \right\rangle \Vert ^2 \le \frac{1}{1+\frac{\gamma }{8^2}} = \frac{1}{1+\frac{\gamma }{64}}. \end{aligned}$$
(93)

Here we used the fact that, for every projector \(P_{ij}\), at most 8 projectors do not commute with it. Now, we have the following claim, which is proved towards the end. It uses the ‘light cone’ argument from [3].

Claim B.1

Let F be any univariate polynomial of degree at most t/6 satisfying \(F(0)=1\). Then

$$\begin{aligned} DL(t)= \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) \cdot F\left( \mathbbm {1}- DL^{\dagger }DL\right) \cdot \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) . \end{aligned}$$
(94)

Before proving this claim, we show how it can be used to establish Lemma 3.1. We apply the Claim with \(F=\mathrm {Step}_{\frac{t}{6}, \frac{\gamma }{64+\gamma }}\) where the right-hand side is the polynomial from Fact 2.1. From this we see that for any \(\psi \in G_{\perp }\)

$$\begin{aligned} \Vert DL(t) \left| \psi \right\rangle \Vert ^2 \le \Vert \mathrm {Step}_{\frac{t}{6}, \frac{\gamma }{64+\gamma }} \left( \mathbbm {1}- DL^{\dagger }DL \right) \left| \psi ' \right\rangle \Vert ^2 \end{aligned}$$

where \(\psi '\in G_{\perp }\) is the state

$$\begin{aligned} \left| \psi ' \right\rangle = \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) \left| \psi \right\rangle /\Vert \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) \left| \psi \right\rangle \Vert . \end{aligned}$$

But Eq. (93) ensures that the eigenvalues of \(DL^{\dagger }DL\) in \(G_\perp \) are at most \(\frac{1}{1+ \frac{\gamma }{64}} = 1- \frac{\gamma }{64+\gamma }\). Using Fact 2.1 and the fact that \(\gamma \le 1\), we get

$$\begin{aligned} \Vert DL(t) \left| \psi \right\rangle \Vert \le 2e^{-\frac{t}{3}\sqrt{\frac{\gamma }{64+\gamma }}}\le 2e^{-\frac{t}{3}\sqrt{\frac{\gamma }{65}}}\le 2e^{-\frac{t\sqrt{\gamma }}{25}} \end{aligned}$$

Proof of Claim B.1

For every \(i\in [n-1]\) and \(k\in [4]\), let

$$\begin{aligned} \Pi _{i,k}{\mathop {=}\limits ^{\mathrm {def}}}\prod _{\mathbbm {1}-P_{ij}\in {\mathcal {G}}_k: Supp(P_{ij})\in \{i,i+1\}}(\mathbbm {1}-P_{ij}) \end{aligned}$$

be the product of projectors from \({\mathcal {G}}_k\) that are supported only on columns \(\{i,i+1\}\). Since all projectors in \({\mathcal {G}}_k\) commute, \(\Pi _{i,k}\) is also a projector and we can write \(DL_k = \prod _{i\in [n-1]}\Pi _{i,k}\). For any \(S\subset [n]\), define

$$\begin{aligned} DL_k^S{\mathop {=}\limits ^{\mathrm {def}}}\prod _{i:Supp(\Pi _{i,k})\cap S \ne \phi } \Pi _{i,k} \end{aligned}$$

as the product of projectors \(\Pi _{i,k}\) that have their support overlapping with S.

Fig. 5
figure 5

Graphical description of Eq. (97). a The operators \(DL_1, DL_2, DL_3, DL_4\) correspond to the dark yellow, light yellow, dark blue and light blue layers, respectively. Within each layer, all the projectors (small rectangles representing \(\Pi _{i,k}\)) mutually commute, although they need not have disjoint support. Two projectors from different layers may not commute if they have overlapping support. b Some projectors in \(DL_1\) are ‘absorbed’ by the red coarse-grained layer. Resulting operator is \(DL_1^{S_0}\) from Eq. (95). c The same process occurs for 4 steps, with projectors from \(DL_2, DL_3, DL_4\) absorbed in the red coarse-grained layer. The resulting operator is \(DL_1^{S_0}DL_2^{S_1}DL_3^{S_2}DL_4^{S_3}\) and the support of ‘unabsorbed’ projectors increases its boundary by one at each step. All the remaining projectors can be absorbed in the green coarse-grained layer, as they are contained in its support

The argument below has been illustrated in Fig. 5. Let \(S_0\) be the complement of the support of \( \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) \). Observe, using frustration-freeness, that for any \(\Pi _{i,k}\) whose support is contained in the support of \( \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) \), we have

$$\begin{aligned} \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) \Pi _{i,k} = \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) . \end{aligned}$$

This implies the following identity (c.f. Fig. 5b):

$$\begin{aligned} \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) DL_1 = \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) DL_1^{S_0}. \end{aligned}$$
(95)

For all integers \(\alpha \ge 1\), recursively define \(S_{\alpha }\) as the set of all columns at distance at most 1 from \(S_{\alpha -1}\). Clearly, we have the inclusion \(S_0 \subset S_1 \subset S_2 \ldots \). Similar to Eq. (95), we can ‘absorb’ some of the projectors in \(DL_1DL_2\) and obtain the identity:

$$\begin{aligned} \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) DL_1DL_2= \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) DL_1^{S_0}DL_2^{S_1}. \end{aligned}$$
(96)

Applying the same argument recursively, and using the fact that

$$\begin{aligned} \left( DL^{\dagger }DL \right) ^p = \left( DL_1\cdot DL_2\cdot DL_3\cdot DL_4\cdot DL_3\cdot DL_2 \right) ^p\cdot DL_1, \end{aligned}$$

we conclude (c.f. Fig. 5c)

$$\begin{aligned}&\left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) \left( DL^{\dagger }DL \right) ^{p}\nonumber \\&\quad = \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) DL_1^{S_0}\cdot DL_2^{S_1}\cdot DL_3^{S_2}\ldots DL_1^{S_{6p}}. \end{aligned}$$
(97)

If \(6p\le t\), the set \(S_{6p}\) is contained in the support of \( \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) \). Furthermore, if \(\Pi _{i,k}\) is in the support of \( \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) \), we have

$$\begin{aligned} \Pi _{i,k} \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) = \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) . \end{aligned}$$

Thus, all the projectors in \(DL_1^{S_0}\cdot DL_2^{S_1}\cdot DL_3^{S_2}\ldots DL_1^{S_{6p}}\) can be ‘absorbed’ in \( \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) \), which can be formalized as:

$$\begin{aligned} DL_1^{S_0}\cdot DL_2^{S_1}\cdot DL_3^{S_2}\ldots DL_1^{S_{6p}} \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) = \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) . \end{aligned}$$
(98)

Combining Eqs. (97) and (98), we find that

$$\begin{aligned}&\left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) \left( DL^{\dagger }DL \right) ^{p} \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) \nonumber \\&\quad = \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) \end{aligned}$$
(99)

for any \(p\le t/6\). Thus, any such power \((DL^{\dagger }DL)^p\) can be replaced by 1 whenever it is sandwiched between the products of projectors in Eq. (99). This implies that for a polynomial F of degree at most t/6, we have

$$\begin{aligned}&\left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) F(I-DL^{\dagger }DL) \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) \nonumber \\&\quad = \left( Q'_{2t}\cdot Q'_{8t}\cdot Q'_{14t}\cdot \cdots \right) F(0) \left( Q'_{5t}\cdot Q'_{11t}\cdot Q'_{17t}\cdot \cdots \right) , \end{aligned}$$
(100)

and using the fact that \(F(0)=1\) completes the proof. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anshu, A., Arad, I. & Gosset, D. Entanglement Subvolume Law for 2D Frustration-Free Spin Systems. Commun. Math. Phys. 393, 955–988 (2022). https://doi.org/10.1007/s00220-022-04381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-022-04381-2

Navigation