Skip to main content
Log in

Fractional Hypocoercivity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper is devoted to kinetic equations without confinement. We investigate the large time behaviour induced by collision operators with fat tailed local equilibria. Such operators have an anomalous diffusion limit. In the appropriate scaling, the macroscopic equation involves a fractional diffusion operator so that the optimal decay rate is determined by a fractional Nash type inequality. At kinetic level we develop an \(\mathrm {L}^2\)-hypocoercivity approach and establish a rate of decay compatible with the fractional diffusion limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aceves-Sanchez, P., Cesbron, L.: Fractional diffusion limit for a fractional Vlasov–Fokker–Planck equation. SIAM J. Math. Anal. 51(1), 469–488 (2019)

    Article  MathSciNet  Google Scholar 

  2. Ayi, N., Herda, M., Hivert, H., Tristani, I.: A note on hypocoercivity for kinetic equations with heavy-tailed equilibrium. Comptes Rendus Math. 358(3), 333–340 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bakry, D., Cattiaux, P., Guillin, A.: Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254(3), 727–759 (2008)

    Article  MathSciNet  Google Scholar 

  4. Ben Abdallah, N., Mellet, A., Puel, M.: Anomalous diffusion limit for kinetic equations with degenerate collision frequency. Math. Models Methods Appl. Sci. 21(11), 2249–2262 (2011)

    Article  MathSciNet  Google Scholar 

  5. Ben-Artzi, J., Einav, A.: Weak Poincaré inequalities in the absence of spectral gaps. Ann. Henri Poincaré 21(2), 359–375 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Biler, P., Karch, G.: Blowup of solutions to generalized Keller–Segel model. J. Evol. Equ. 10(2), 247–262 (2010)

    Article  MathSciNet  Google Scholar 

  7. Biler, P., Karch, G., Laurençot, P.: Blowup of solutions to a diffusive aggregation model. Nonlinearity 22(7), 1559–1568 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Blanchet, A., Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Asymptotics of the fast diffusion equation via entropy estimates. Arch. Ration. Mech. Anal. 191(2), 347–385 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bouin, E., Dolbeault, J., Lafleche, L., Schmeiser, C.: Hypocoercivity and sub-exponential local equilibria. Monatshefte für Mathematik 194(1), 41–65 (2020)

    Article  MathSciNet  Google Scholar 

  10. Bouin, E., Dolbeault, J., Mischler, S., Mouhot, C., Schmeiser, C.: Hypocoercivity without confinement. Pure Appl. Anal. 2(2), 203–232 (2020)

    Article  MathSciNet  Google Scholar 

  11. Bouin, E., Dolbeault, J., Schmeiser, C.: Diffusion and kinetic transport with very weak confinement. Kinetic Relat. Models 13(2), 345–371 (2020)

    Article  MathSciNet  Google Scholar 

  12. Bouin, E., Mouhot, C.: Quantitative fluid approximation in transport theory: a unified approach (2020)

  13. Brezis, H., Ponce, A.C.: Kato’s inequality when \(\Delta u\) is a measure. Comptes Rendus Math. 338(8), 599–604 (2004)

    Article  MathSciNet  Google Scholar 

  14. Cao, C.: The kinetic Fokker–Planck equation with weak confinement force. Commun. Math. Sci. 17(8), 2281–2308 (2019)

    Article  MathSciNet  Google Scholar 

  15. Cattiaux, P., Nasreddine, E., Puel, M.: Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: the critical case. Kinetic Relat. Models 12(4), 727–748 (2019)

    Article  MathSciNet  Google Scholar 

  16. Cesbron, L., Mellet, A., Trivisa, K.: Anomalous transport of particles in plasma physics. Appl. Math. Lett. 25(12), 2344–2348 (2012)

    Article  MathSciNet  Google Scholar 

  17. Chen, X., Wang, J.: Weighted Poincaré inequalities for non-local Dirichlet forms. J. Theor. Probab. 30(2), 452–489 (2017)

    Article  Google Scholar 

  18. Crouseilles, N., Hivert, H., Lemou, M.: Numerical schemes for kinetic equations in the anomalous diffusion limit. Part I: the case of heavy-tailed equilibrium. SIAM J. Sci. Comput. 38(2), A737–A764 (2016)

    Article  MathSciNet  Google Scholar 

  19. Crouseilles, N., Hivert, H., Lemou, M.: Numerical schemes for kinetic equations in the anomalous diffusion limit. Part II: degenerate collision frequency. SIAM J. Sci. Comput. 38(4), A2464–A2491 (2016)

    Article  MathSciNet  Google Scholar 

  20. Degond, P., Goudon, T., Poupaud, F.: Diffusion limit for nonhomogeneous and non-micro-reversible processes. Indiana Univ. Math. J. 49(3), 1175–1198 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Dolbeault, J., Mouhot, C., Schmeiser, C.: Hypocoercivity for linear kinetic equations conserving mass. Trans. Am. Math. Soc. 367(6), 3807–3828 (2015)

    Article  MathSciNet  Google Scholar 

  22. Fournier, N., Tardif, C.: Anomalous diffusion for multi-dimensional critical kinetic Fokker–Planck equations. Ann. Probab. 48(5), 2359–2403 (2020)

  23. Fournier, N., Tardif, C.: One dimensional critical kinetic Fokker–Planck equations, Bessel and stable processes. Commun. Math. Phys. 381(1), 143–173 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization of non-symmetric operators and exponential H-theorem. Mémoires de la Société Mathématique de France. Nouvelle Série 153 153, 1–137 (2017)

    Article  Google Scholar 

  25. Jara, M., Komorowski, T., Olla, S.: Limit theorems for additive functionals of a Markov chain. Ann. Appl. Probab. 19(6), 2270–2300 (2009)

    Article  MathSciNet  Google Scholar 

  26. Kato, T.: Schrödinger operators with singular potentials. Isr. J. Math. 13(1972), 135–148 (1973)

    MATH  Google Scholar 

  27. Kavian, O., Mischler, S., Ndao, M.: The Fokker–Planck equation with subcritical confinement force. Journal de Mathématiques Pures et Appliquées 151, 171–211 (2021)

    Article  MathSciNet  Google Scholar 

  28. Lafleche, L.: Fractional Fokker–Planck equation with general confinement force. SIAM J. Math. Anal. 52(1), 164–196 (2020)

    Article  MathSciNet  Google Scholar 

  29. Lafleche, L.: Dynamique de systèmes à grand nombre de particules et systèmes dynamiques. Ph.D. thesis, Paris Sciences et Lettres, Université Paris-Dauphine. https://laurent-lafleche.perso.math.cnrs.fr/docs/These.pdf, 28/06/2019

  30. Landkof, N.S.: Foundations of Modern Potential Theory. Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berucksichtigung der Anwendungsgebiete, Bd. 180. Springer (1972)

  31. Lebeau, G., Puel, M.: Diffusion approximation for Fokker Planck with heavy tail equilibria: a spectral method in dimension 1. Commun. Math. Phys. 366(2), 709–735 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  32. Mellet, A.: Fractional diffusion limit for collisional kinetic equations: a moments method. Indiana Univ. Math. J. 59(4), 1333–1360 (2010)

    Article  MathSciNet  Google Scholar 

  33. Mellet, A., Mischler, S., Mouhot, C.: Fractional diffusion limit for collisional kinetic equations. Arch. Ration. Mech. Anal. 199(2), 493–525 (2011)

    Article  MathSciNet  Google Scholar 

  34. Mischler, S., Mouhot, C.: Exponential stability of slowly decaying solutions to the kinetic Fokker–Planck equation. Arch. Ration. Mech. Anal. 221(2), 677–723 (2016)

    Article  MathSciNet  Google Scholar 

  35. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  Google Scholar 

  36. Puel, M., Mellet, A., Ben Abdallah, N.: Fractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach. Kinetic Relat. Models 4(4), 873–900 (2011)

    Article  MathSciNet  Google Scholar 

  37. Röckner, M., Wang, F.-Y.: Weak Poincaré inequalities and \(L^2\)-convergence rates of Markov semigroups. J. Funct. Anal. 185(2), 564–603 (2001)

    Article  MathSciNet  Google Scholar 

  38. Scalas, E., Gorenflo, R., Mainardi, F., Raberto, M.: Revisiting the derivation of the fractional diffusion equation. Fractals 11(supp. 01), 281–289 (2003)

    Article  MathSciNet  Google Scholar 

  39. Stein, E.M., Weiss, G.: Interpolation of operators with change of measures. Trans. Am. Math. Soc. 87(1), 159–172 (1958)

    Article  MathSciNet  Google Scholar 

  40. Wang, F.-Y., Wang, J.: Functional inequalities for stable-like Dirichlet forms. J. Theor. Probab. 28(2), 423–448 (2015)

    Article  MathSciNet  Google Scholar 

  41. Wang, J.: A simple approach to functional inequalities for non-local Dirichlet forms. ESAIM Probab. Stat. 18, 503–513 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Project EFI (ANR-17-CE40-0030) of the French National Research Agency (ANR). The authors are deeply indebted to Christian Schmeiser, who was at the origin of the research project and participated to the preliminary discussions while he was visiting as the holder of the Chaire d’excellence of the Fondation Sciences Mathématiques de Paris, also supported by Paris Sciences et Lettres. The project is also part of the Amadeus project Hypocoercivity no. 39453PH. © 2021 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emeric Bouin.

Additional information

Communicated by H.-T. Yau.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Steady States and Force Field for the Fractional Laplacian with Drift

Steady States and Force Field for the Fractional Laplacian with Drift

This appendix is devoted to the Case \({\mathsf {L}}={\mathsf {L}}_3\) of the collision operator \({\mathsf {L}}\), that is, to \({\mathsf {L}}_3 f=\Delta _v^{\sigma /2}f+\nabla _v\cdot \left( E\,f\right) \). Our goal here is to prove that the collision frequency \(\nu (v)\) behaves like \(|v|^{- \beta }\) with \(\beta = \sigma -\gamma \) as \(|v|\rightarrow +\infty \), as claimed in Sect. 1. By Definition (9) of the force field E, we know that

$$\begin{aligned} \nabla _v\cdot (E\,F)=-\Delta _v^{\sigma /2} F=-\,\nabla _v\cdot \left( \nabla _v(-\Delta _v)^\frac{\sigma -2}{2}\,F\right) , \end{aligned}$$

and this implies that, up to an additive constant,

$$\begin{aligned} E\,F=-\,\nabla _v(-\Delta _v)^\frac{\sigma -2}{2}\,F=-\,\nabla _v\left( \frac{C_{d,\sigma }}{|v|^{d+\sigma -2}}*\frac{c_\gamma }{\left\langle v\right\rangle ^{d+\gamma }}\right) \end{aligned}$$

where \(c_\gamma \) and \(C_{d,\sigma }\) are given respectively by (2) and (20).

Proposition 7

Assume that \(\gamma >0\), \(\sigma \in (0,2)\) and let \( \beta =\sigma - \gamma \). There is a positive function \(G\in \mathrm {L}^\infty ({{\mathbb {R}}}^d)\) with \(1/G\in \mathrm {L}^\infty (B_0^c(1))\) such that E is given by

$$\begin{aligned} \forall \,v\in {{\mathbb {R}}}^d,\quad E(v)=G(v) \left\langle v\right\rangle ^{- \beta } v. \end{aligned}$$

Proof

Let \(u(v)=-\nabla _v\,\big (\frac{1}{|v|^{d+\sigma -2}}*\frac{1}{\left\langle v\right\rangle ^{d+\gamma }}\big )(v)\) so that \(E(v)=C_{d,\sigma } \left\langle v\right\rangle ^{d+\gamma } u(v)\). Since

$$\begin{aligned} u(v)=(d+\gamma )\left( \frac{1}{|v|^{d+\sigma -2}}*\frac{v}{\left\langle v\right\rangle ^{d+\gamma +2}}\right) \end{aligned}$$

where \(\left\langle v\right\rangle ^{-(d+\gamma +2)} v\in C^\infty ({{\mathbb {R}}}^d)\cap \mathrm {L}^1(\mathrm dv)\), and \(\sigma <2\), one has \(u\in C^1_{\mathrm {loc}}({{\mathbb {R}}}^d)\) and \(u(0)=0\) which proves the result in \(B_1(0)\). We look for an estimate of \(u(v)\cdot v\) from above and below on \(B_0^c(1)\). Notice that u can also be written as

$$\begin{aligned} u(v)=\left( d+\sigma -2\right) \left( \frac{v}{|v|^{d+\sigma }}*\frac{1}{\left\langle v\right\rangle ^{d+\gamma }}\right) . \end{aligned}$$
(29)

Depending on the integrability at infinity of \(v/|v|^{d+\sigma }\), that is, whether \(\sigma \in (0,1)\) or not, we have to distinguish two cases.

\(\bullet \) Case \(\sigma \in (0,1)\). Using (29), we have the estimates

$$\begin{aligned} \left| \int _{|w|\ge \left\langle v\right\rangle /2}\frac{w}{|w|^{d+\sigma }}\frac{\mathrm dw}{\left\langle w-v\right\rangle ^{d+\gamma }}\right|&\le \frac{2^{d+\sigma -1}}{\left\langle v\right\rangle ^{d+\sigma -1}}\int _{{{\mathbb {R}}}^d}\frac{\mathrm dw}{\left\langle w\right\rangle ^{d+\gamma }},\\ \left| \int _{|w|<\left\langle v\right\rangle /2}\frac{w}{|w|^{d+\sigma }}\frac{\mathrm dw}{\left\langle w-v\right\rangle ^{d+\gamma }}\right|&\le \left( \int _{|w|<\left\langle v\right\rangle /2}\frac{\mathrm dw}{|w|^{d+\sigma -1}}\right) \frac{2^{d+\sigma -1}}{|v|^{d+\gamma }}\\&\le \frac{2^{d+\sigma -1}\,\omega _d}{(1-\sigma )\,|v|^{d+\gamma +\sigma -1}}, \end{aligned}$$

and obtain

$$\begin{aligned} \forall \,v\in {{\mathbb {R}}}^d,\quad |u(v)\cdot v|\le |u(v)|\,|v|\lesssim |v|^{-(d+\sigma -2)}. \end{aligned}$$

To get a bound from below on \(u(v)\cdot v\), we cut the integral in two pieces and use the fact that \(|v|>1\) and \(|w-v|<1/2\) implies \(w\cdot v>0\). First

$$\begin{aligned}&\int _{\begin{array}{c} |w-v|>1/2\\ |w+v|>1/2 \end{array}}\frac{w\cdot v}{|w|^{d+\sigma }}\frac{\mathrm dw}{\left\langle w-v\right\rangle ^{d+\gamma }}=\left( \int _{\begin{array}{c} |w-v|>1/2\\ w\cdot v>0 \end{array}}+\int _{\begin{array}{c} |w+v|>1/2\\ w\cdot v<0 \end{array}}\right) \frac{w\cdot v}{|w|^{d+\sigma }}\frac{\mathrm dw}{\left\langle w-v\right\rangle ^{d+\gamma }}\\&\quad =\int _{\begin{array}{c} |w-v|>1/2\\ w\cdot v>0 \end{array}}\left( \frac{1}{\left\langle w-v\right\rangle ^{d+\gamma }} -\frac{1}{\left\langle w+v\right\rangle ^{d+\gamma }}\right) \frac{w\cdot v}{|w|^{d+\sigma }}\,\mathrm dw, \end{aligned}$$

which is positive since \(\left\langle w+v\right\rangle ^2-\left\langle w-v\right\rangle ^2=2\,w\cdot v\ge 0\). The remaining terms are dealt with as follows

$$\begin{aligned}&\int _{\begin{array}{c} |w-v|\le 1/2\\ \text{ or }\\ |w+v|\le 1/2 \end{array}}\frac{w\cdot v}{|w|^{d+\sigma }}\frac{\mathrm dw}{\left\langle w-v\right\rangle ^{d+\gamma }}\\&\quad =\int _{|w-v|<\frac{1}{2}}\left( \frac{1}{\left\langle w-v\right\rangle ^{d+\gamma }}-\frac{1}{\left\langle w+v\right\rangle ^{d+\gamma }}\right) \frac{w\cdot v}{|w|^{d+\sigma }}\,\mathrm dw\\&\quad \ge \left( (4/5)^{d+\gamma }-(2/5)^{d+\gamma }\right) \int _{|w-v|<\frac{1}{2}}\frac{w\cdot v}{|w|^{d+\sigma }}\,\mathrm dw, \end{aligned}$$

since \(|w+v|\ge 2\,|v|-|w-v|\ge \frac{3}{2}\). Finally, if \(|v|>1\) and \(|w-v|<\frac{1}{2}\), we get

$$\begin{aligned} 2\,w\cdot v&=|v|^2+|w|^2-|w-v|^2\ge |v|^2-\frac{1}{2}\ge \frac{|v|^2}{2},\\ |w|&\le |v|+|w-v|\le 2\,|v|, \end{aligned}$$

so that

$$\begin{aligned} \int _{|w-v|<\frac{1}{2}}\frac{w\cdot v}{|w|^{d+\sigma }}\,\mathrm dw\ge \frac{|B_0(1/2)|}{2^{d+\sigma +2}}\frac{1}{|v|^{d+\sigma -2}}. \end{aligned}$$

This implies \(u(v)\cdot v\ge C\,|v|^{-(d+\sigma -2)}\) for some \(C>0\). Since u is radial, we proved that

$$\begin{aligned} u(v)=G(v)\,\frac{v}{|v|^{d+\sigma }} \end{aligned}$$

where \(G\in \mathrm {L}^\infty ({{\mathbb {R}}}^d)\) and \(G^{-1}\in \mathrm {L}^\infty (B_0^c(1))\) and the conclusion holds with \(\beta =\sigma - \gamma \).

\(\bullet \) Case \(\sigma \in [1,2)\). The gradient of \(v\mapsto |v|^{2-d-\sigma }\) is a distribution of order 1 that can be defined as a principal value. Indeed, in the sense of distributions, for any \(\varphi \in {\mathcal {D}}({{\mathbb {R}}}^d)\), we have

$$\begin{aligned} \left\langle \nabla _v|v|^{2-d-\sigma },\varphi \right\rangle _{{\mathcal {D}}',{\mathcal {D}}}&=-\int _{{{\mathbb {R}}}^d}\frac{\nabla _v\varphi (v)}{|v|^{d+\sigma -2}}\,\mathrm dv=-\int _{{{\mathbb {R}}}^d}\frac{\nabla _v(\varphi (v)-\varphi (0))}{|v|^{d+\sigma -2}}\,\mathrm dv\\&=(d+\sigma -2)\int _{{{\mathbb {R}}}^d}\frac{v}{|v|^{d+\sigma }}\left( \varphi (v)-\varphi (0)\right) \mathrm dv\\&=: (d+\sigma -2) \left\langle {{\,\mathrm{pv}\,}}\!\left( \frac{v}{|v|^{d+\sigma }}\right) \!,\varphi \right\rangle _{{\mathcal {D}}',{\mathcal {D}}}. \end{aligned}$$

Identity (29) is replaced by

$$\begin{aligned} \frac{u(v)}{d+\sigma -2}={{\,\mathrm{pv}\,}}\!\left( \frac{v}{|v|^{d+\sigma }}\right) *\frac{1}{\left\langle v\right\rangle ^{d+\gamma }}=\int _{{{\mathbb {R}}}^d}\frac{w}{|w|^{d+\sigma }}\left( \frac{1}{\left\langle v-w\right\rangle ^{d+\gamma }}-\frac{1}{\left\langle v\right\rangle ^{d+\gamma }}\right) \mathrm dw, \end{aligned}$$

so that, after computations like the ones in the proof of Lemma 10,

$$\begin{aligned} \frac{|u(v)|}{d+\sigma -2}\le \int _{{{\mathbb {R}}}^d}\frac{1}{|w-v|^{d+\sigma -1}}\left| \frac{1}{\left\langle w\right\rangle ^{d+\gamma }}-\frac{1}{\left\langle v\right\rangle ^{d+\gamma }}\right| \mathrm dw\lesssim \frac{1}{\left\langle v\right\rangle ^{d+\sigma -2}}. \end{aligned}$$

Now estimate \(u(v)\cdot v\) by

$$\begin{aligned}&\int _{|w|\ge \frac{1}{2}}\frac{w\cdot v}{|w|^{d+\sigma }}\left( \frac{1}{\left\langle v-w\right\rangle ^{d+\gamma }}-\frac{1}{\left\langle v\right\rangle ^{d+\gamma }}\right) \mathrm dw\\&\quad =\int _{|w|\ge \frac{1}{2}}\frac{w\cdot v}{|w|^{d+\sigma }}\frac{1}{\left\langle v-w\right\rangle ^{d+\gamma }}\,\mathrm dw\gtrsim \frac{1}{\left\langle v\right\rangle ^{d+\sigma -2}}. \end{aligned}$$

and

$$\begin{aligned}&\left| \int _{|w|<\frac{1}{2}}\frac{w\cdot v}{|w|^{d+\sigma }}\left( \frac{1}{\left\langle v-w\right\rangle ^{d+\gamma }}-\frac{1}{\left\langle v\right\rangle ^{d+\gamma }}\right) \mathrm dw \right| \\&\quad \le \sup _{w\in B_v(1/2)}\frac{(d+\gamma )\,|v|}{\left\langle w\right\rangle ^{d+\gamma +1}}\int _{|w|<\frac{1}{2}}\frac{\mathrm dw}{|w|^{d+\sigma -2}}\lesssim \frac{1}{\left\langle v\right\rangle ^{d+\gamma }}. \end{aligned}$$

The result follows from the fact that \(d+\gamma>d>d+\sigma -2\). \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouin, E., Dolbeault, J. & Lafleche, L. Fractional Hypocoercivity. Commun. Math. Phys. 390, 1369–1411 (2022). https://doi.org/10.1007/s00220-021-04296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04296-4

Navigation