Skip to main content
Log in

Quantum Channels with Quantum Group Symmetry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we will demonstrate that any compact quantum group can be used as symmetries for quantum channels, which leads us to the concept of covariant channels. We then unearth the structure of the convex set of covariant channels by identifying all extreme points under the assumption of multiplicity-free condition for the associated fusion rule, which provides a wide generalization of the results of Mozrzymas et al. (J Math Phys 58(5):052204, 2017). The presence of quantum group symmetry in contrast to the group symmetry will be highlighted in the examples of quantum permutation groups and \(SU_q(2)\). In the latter example, we will see the necessity of the Heisenberg picture coming from the non-Kac type condition. This paper ends with the covariance with respect to projective representations, which leads us back to Weyl covariant channels and its fermionic analogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Amosov, G.G., Holevo, A.S., Werner, R.F.: On some additivity problems in quantum information theory. Probl. Inf. Transm. 36(4), 305–313 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Al Nuwairan, M.: The extreme points of SU(2)-irreducibly covariant channels. Int. J. Math. 25(6), 1450048 (2014)

    Article  MathSciNet  Google Scholar 

  3. Banica, T.: Symmetries of a generic coaction. Math. Ann. 314(4), 763–780 (1999)

    Article  MathSciNet  Google Scholar 

  4. Brannan, M., Collins, B.: Highly entangled, non-random subspaces of tensor products from quantum groups. Commun. Math. Phys. 358(3), 1007–1025 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. Brannan, M., Collins, B., Lee, H.H., Youn, S.-G.: Temperley-Lieb quantum channels. Commun. Math. Phys. 376(2), 795–839 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. Daws, M.: Operator biprojectivity of compact quantum groups. Proc. Am. Math. Soc. 138(4), 1349–1359 (2010)

    Article  MathSciNet  Google Scholar 

  7. Datta, N., Fukuda, M., Holevo, A.S.: Complementarity and additivity for covariant channels. Quantum Inf. Process. 5(3), 179–207 (2006)

    Article  MathSciNet  Google Scholar 

  8. Datta, N., Kholevo, A.S., Sukhov, Y.M.: On a sufficient condition for additivity in quantum information theory. Probl. Peredachi Inf. 41(2), 9–25 (2005)

    MathSciNet  Google Scholar 

  9. Datta, N., Tomamichel, M., Wilde, M.M.: On the second-order asymptotics for entanglement-assisted communication. Quantum Inf. Process. 15(6), 2569–2591 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Digernes, T., Varadarajan, V.S.: Models for the irreducible representation of a Heisenberg group. Infinite Dimensional Analysis. Quantum Probab. Relat.Top. 7(4), 527–546 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Fulton, W., Harris, J.: Representation Theory. A First Course. Graduate Texts in Mathematics. Springer, New York (1991)

    MATH  Google Scholar 

  12. Franz, U., Lee, H.H.: Skalski,: Integration over the quantum diagonal subgroup and associated Fourier-like algebras. Int. J. Math. 27(9), 1650073 (2016)

    Article  Google Scholar 

  13. Hashagen, A.-L.K.: Symmetry Methods in Quantum Information Theory. PhD thesis, Technische Universität München (2018)

  14. Hayashi, M.: Group Representation for Quantum Theory. Springer, Cham (2017). Revised and expanded from the (2014) Japanese original

  15. Hayashi, M.: A Group Theoretic Approach to Quantum Information. Springer, Cham (2017). Translated from the 2014 Japanese original

  16. Keyl, M.: Fundamentals of quantum information theory. Phys. Rep. 369(5), 431–548 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. Koelink, H.T., Koornwinder, T.H.: The Clebsch-Gordan coefficients for the quantum group \({{\rm S}}_\mu {{\rm U}}(2)\) and \(q\)-Hahn polynomials. Nederl. Akad. Wetensch. Indag. Math. 51(4), 443–456 (1989)

    Article  MathSciNet  Google Scholar 

  18. Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations. Texts and Monographs in Physics. Springer, Berlin (1997)

    Book  Google Scholar 

  19. König, R., Wehner, S.: A strong converse for classical channel coding using entangled inputs. Phys. Rev. Lett. 103, 070504 (2009)

    Article  ADS  Google Scholar 

  20. Lieb, E.H.: Proof of an entropy conjecture of Wehrl. Commun. Math. Phys. 62(1), 35–41 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  21. Lieb, E.H., Solovej, J.P.: Proof of an entropy conjecture for Bloch coherent spin states and its generalizations. Acta Math. 212(2), 379–398 (2014)

    Article  MathSciNet  Google Scholar 

  22. Marvian, I., Spekkens, R.W.: Asymmetry properties of pure quantum states. Phys. Rev. A 90, 014102 (2014)

    Article  ADS  Google Scholar 

  23. Mozrzymas, M., Studziński, M., Datta, N.: Structure of irreducibly covariant quantum channels for finite groups. J. Math. Phys. 58(5), 052204 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Mendl, C.B., Wolf, M.M.: Unital quantum channels-convex structure and revivals of Birkhoff’s theorem. Commun. Math. Phys. 289(3), 1057–1086 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Siudzińska, K., Chruściński, D.: Quantum channels irreducibly covariant with respect to the finite group generated by the Weyl operators. J. Math. Phys. 59(3), 033508 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Timmermann, T.: An invitation to quantum groups and duality. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, (2008). From Hopf algebras to multiplicative unitaries and beyond

  27. Tokuyama, T.: On the decomposition rules of tensor products of the representations of the classical Weyl groups. J. Algebra 88, 380–394 (1984)

    Article  MathSciNet  Google Scholar 

  28. Vollbrecht, K.G.H., Werner, R.F.: Entanglement measures under symmetry. Phys. Rev. A 64, 062307 (2001)

    Article  ADS  Google Scholar 

  29. Wang, S.: Quantum symmetry groups of finite spaces. Commun. Math. Phys. 195(1), 195–211 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  30. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  31. Werner, R.F., Holevo, A.S.: Counterexample to an additivity conjecture for output purity of quantum channels. Quantum Inf. Theory 43, 4353–4357 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Woronowicz, S.L.: Compact matrix pseudogroups. Commun. Math. Phys. 111(4), 613–665 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  33. Woronowicz, S.L.: Twisted \({{\rm SU}}(2)\) group. An example of a noncommutative differential calculus. Publ. Res. Inst. Math. Sci. 23(1), 117–181 (1987)

    Article  MathSciNet  Google Scholar 

  34. Wilde, M.M., Tomamichel, M., Berta, M.: Converse bounds for private communication over quantum channels. IEEE Trans. Inf. Theory 63(3), 1792–1817 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

S.-G. Youn was funded by the New Faculty Startup Fund from Seoul National University, by Samsung Science and Technology Foundation under Project Number SSTF-BA2002-01 and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A01009681). H.H. Lee was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) Grant NRF-2017R1E1A1A03070510 and the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIT) (Grant No. 2017R1A5A1015626).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Gyun Youn.

Additional information

Communicated by Y. Kawahigashi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.H., Youn, SG. Quantum Channels with Quantum Group Symmetry. Commun. Math. Phys. 389, 1303–1329 (2022). https://doi.org/10.1007/s00220-021-04283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04283-9

Navigation