Skip to main content
Log in

Adiabatic Approximation for the Motion of Ginzburg-Landau Vortex Filaments

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the concentration property of solutions to the dispersive Ginzburg-Landau (or Gross-Pitaevskii) equation in three dimensions. On a spatial domain, it has long been conjectured that such a solution concentrates near some curve evolving according to the binormal curvature flow, and conversely, that a curve moving this way can be realized in a suitable sense by some solution to the dispersive Ginzburg-Landau equation. Some partial results are known with rather strong symmetry assumptions. Our main theorems here provide affirmative answer to both conjectures under certain small curvature assumption. The results are valid for small but fixed material parameter in the equation, in contrast to the general practice to take this parameter to its zero limit. The advantage is that we can retain precise description of the vortex filament structure. The results hold on a long but finite time interval, depending on the curvature assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32(1), 1–32 (1979). https://doi.org/10.1016/0022-1236(79)90076-4

    Article  MATH  Google Scholar 

  2. Lin, F.H.: Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-\(2\) submanifolds. Commun. Pure Appl. Math. 51(4), 385–441 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bethuel, F., Brezis, H., Orlandi, G.: Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions. J. Funct. Anal. 186(2), 432–520 (2001). https://doi.org/10.1006/jfan.2001.3791

    Article  MathSciNet  MATH  Google Scholar 

  4. Bethuel, F., Orlandi, G., Smets, D.: Convergence of the parabolic Ginzburg-Landau equation to motion by mean curvature. Ann. Math. (2) 163(1), 37–163 (2006). https://doi.org/10.4007/annals.2006.163.37

    Article  MathSciNet  MATH  Google Scholar 

  5. Jerrard, R.L.: Quantized vortex filaments in complex scalar fields. In: Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, pp. 789–810. Kyung Moon Sa, Seoul (2014)

  6. Ovchinnikov, Y.N., Sigal, I.M.: The Ginzburg-Landau equation. III. Vortex dynamics. Nonlinearity 11(5), 1277–1294 (1998). https://doi.org/10.1088/0951-7715/11/5/006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ovchinnikov, Y.N., Sigal, I.M.: Long-time behaviour of Ginzburg-Landau vortices. Nonlinearity 11(5), 1295–1309 (1998). https://doi.org/10.1088/0951-7715/11/5/007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Gustafson, S., Sigal, I.M.: Effective dynamics of magnetic vortices. Adv. Math. 199(2), 448–498 (2006). https://doi.org/10.1016/j.aim.2005.05.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Gang, Z., Sigal, I.M.: Neck pinching dynamics under mean curvature flow. J. Geom. Anal. 19(1), 36–80 (2009). https://doi.org/10.1007/s12220-008-9050-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Gang, Z., Knopf, D., Sigal, I.M.: Neckpinch dynamics for asymmetric surfaces evolving by mean curvature flow. Mem. Am. Math. Soc. 253(1210), 78 (2018). https://doi.org/10.1090/memo/1210

    Article  MathSciNet  MATH  Google Scholar 

  11. Chenn, I., Fournodavlos, G., Sigal, I.M.: The effective dynamics of the volume preserving mean curvature flow. J. Stat. Phys. 172(2), 458–476 (2018). https://doi.org/10.1007/s10955-018-2041-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Stuart, D.: Dynamics of abelian Higgs vortices in the near Bogomolny regime. Commun. Math. Phys. 159(1), 51–91 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. Stuart, D.: The geodesic approximation for the Yang-Mills-Higgs equations. Commun. Math. Phys. 166(1), 149–190 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  14. Perelman, G.: Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations. Commun. Partial Differ. Equ. 29(7–8), 1051–1095 (2004). https://doi.org/10.1081/PDE-200033754

    Article  MathSciNet  MATH  Google Scholar 

  15. Demoulini, S., Stuart, D.: Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schrödinger system. Commun. Math. Phys. 290(2), 597–632 (2009). https://doi.org/10.1007/s00220-009-0844-y

    Article  ADS  MATH  Google Scholar 

  16. Ting, F.: Effective dynamics of multi-vortices in an external potential for the Ginzburg-Landau gradient flow. Nonlinearity 23(1), 179–210 (2010). https://doi.org/10.1088/0951-7715/23/1/010

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Holmer, J., Perelman, G., Zworski, M.: Effective dynamics of double solitons for perturbed mKdV. Commun. Math. Phys. 305(2), 363–425 (2011). https://doi.org/10.1007/s00220-011-1252-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gang, Z., Knopf, D.: Universality in mean curvature flow neckpinches. Duke Math. J. 164(12), 2341–2406 (2015). https://doi.org/10.1215/00127094-3146175

    Article  MathSciNet  MATH  Google Scholar 

  19. Gang, Z., Grech, P.: Adiabatic theorem for the Gross-Pitaevskii equation. Commun. Partial Differ. Equ. 42(5), 731–756 (2017). https://doi.org/10.1080/03605302.2017.1293687

    Article  MathSciNet  MATH  Google Scholar 

  20. Frank, R.L., Gang, Z.: Derivation of an effective evolution equation for a strongly coupled polaron. Anal. PDE 10(2), 379–422 (2017). https://doi.org/10.2140/apde.2017.10.379

    Article  MathSciNet  MATH  Google Scholar 

  21. Frank, R.L., Gang, Z.: A non-linear adiabatic theorem for the one-dimensional Landau-Pekar equations. J. Funct. Anal. 279(7), 108631–43 (2020). https://doi.org/10.1016/j.jfa.2020.108631

    Article  MathSciNet  MATH  Google Scholar 

  22. Ovchinnikov, Y.N., Sigal, I.M.: Ginzburg-Landau equation. I. Static vortices. In: Partial Differential Equations and Their Applications (Toronto, ON, 1995). CRM Proceedings Lecture Notes, vol. 12, pp. 199–220. American Mathematical Society, Providence, RI, (1997). https://doi.org/10.1090/crmp/012/16

  23. Pacard, F., Rivière, T.: Linear and Nonlinear Aspects of Vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 39, p. 342. Birkhäuser Boston Inc, Boston (2000). https://doi.org/10.1007/978-1-4612-1386-4

    Book  MATH  Google Scholar 

  24. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13, p. 159. Birkhäuser Boston Inc, Boston (1994). https://doi.org/10.1007/978-1-4612-0287-5

    Book  MATH  Google Scholar 

  25. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, vol. 34, p. 171. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  26. Lin, T.-C.: Spectrum of the linearized operator for the Ginzburg-Landau equation. Electron. J. Differ. Equ. 6, 25–42 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Sigal, I.M.: Geometric methods in the quantum many-body problem. Nonexistence of very negative ions. Commun. Math. Phys. 85(2), 309–324 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  28. Struwe, M.: Variational Methods, 4th edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 34, p. 302. Springer (2008). Applications to nonlinear partial differential equations and Hamiltonian systems

  29. Fröhlich, J., Gustafson, S., Jonsson, B.L.G., Sigal, I.M.: Solitary wave dynamics in an external potential. Commun. Math. Phys. 250(3):613–642 (2004). https://doi.org/10.1007/s00220-004-1128-1

  30. Lin Zhengping, Z., Zeng, W.C.: Stability of traveling waves of nonlinear Schrödinger equation with nonzero condition at infinity. Arch. Rational Mech. Anal. 222(1):143–212 (2016). https://doi.org/10.1007/s00205-016-0998-7

  31. Jin Zhiwu, J., Zeng, L.C.: Invariant manifolds of traveling waves of the 3D Gross–Pitaevskii equation in the energy space. Commun. Math. Phys. 364(3):981–1039 (2018). https://doi.org/10.1007/s00220-018-3189-6

  32. Gèrard, P.: The Cauchy problem for the Gross–Pitaevskii equation. Annales de l’Institut Henri Poincaré C Analyse non linéaire 23(5):765–779 (2006). https://doi.org/10.1016/j.anihpc.2005.09.004

Download references

Acknowledgements

The Author is supported by Danish National Research Foundation grant CPH-GEOTOP-DNRF151.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxuan Zhang.

Ethics declarations

Conflict of interest

The Author has no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by H. Spohn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Properties of the Fréchet Derivatives

Appendix A Properties of the Fréchet Derivatives

In this section we consider the Fréchet derivatives of the immersion f defined in (22).

1.1 Basic variational calculus

First, we recall some basic elements of variational derivatives that we used repeatedly. For details, see for instance [28, Appendix C]

Fréchet derivative. Let \(X,\,Y\) be two Banach spaces, U be an open set in X. For a map \(g:U\subset X\rightarrow Y\) and a vector \(u\in U\), the Fréchet derivative dg(u) is a linear map from \(X\rightarrow Y\) such that \(g(u+v)-g(u)-dg(u)v=o(\left\Vert v\right\Vert _X)\) for every \(v\in X\). If dg(u) exists at u, then it is unique. If dg(u) exists for every \(u\in U\), and the map \(u\mapsto dg(u)\) is continuous from U to the space of linear operators L(XY), then we we say g is \(C^1\) on U. In this case, dg(u) is uniquely given by

$$\begin{aligned} v\mapsto \tfrac{dg(u+tv)}{dt}\vert _{t=0}\quad (v\in X). \end{aligned}$$

Iteratively, we can define higher order derivatives this way.

Gradient and Hessian. If X is a Hilbert space over scalar field Y, then by Riesz representation, we can identify dg(u) as an element in X, denoted \(g'(u)\). The vector \(g'(u)\) is called the X-gradient of g. Similarly, we denote \(g''(u)\) the second-order Fréchet derivative \(d^2g(u)\). If g is \(C^2\), then \(g''\) can be identified as a symmetric linear operator uniquely determined by the relation

$$\begin{aligned} \langle g''(u)v,\,w\rangle = \tfrac{\partial {^{2}}g(u+tv+sw)}{\partial {t^{}}\partial {s^{}}} \vert _{s=t=0}\quad (v,w\in X). \end{aligned}$$

Expansion. Let X be a Hilbert space over scalar field Y. Suppose g is \(C^2\) on \(U\subset X\). Define a scalar function \(\phi (t):=g(u+tv)\) for vectors vw such that \(v+tw\in U\) for every \(0\le t\le 1\). Then the elementary Taylor expansion at \(\phi (1)\) gives

$$\begin{aligned} g(v+w)=g(v)+\langle g'(v),\,w\rangle +\frac{1}{2}\langle g''(v)w,\,w\rangle +o(\left\Vert w\right\Vert ^2). \end{aligned}$$

Here we have used the definition of \(g'\) and \(g''\) from the last paragraph.

Composition. Let \(\Omega \subset \mathbb {R}^d\) be a bounded domain with smooth boundary. Fix \(r>d/2,\,f\in C^{r+1}(\mathbb {R}^n)\). For \(u:\Omega \rightarrow \mathbb {R}^n\), define a map \(g:u\mapsto f\circ u\). Then \(g:H^r(\Omega )\rightarrow H^r(\Omega )\), and is \(C^1\). The Fréchet derivative is given by \(v\mapsto \nabla f\cdot v\).

1.2 Various uniform estimates

In this section we assume \(\epsilon \ll 1\) in (1). For two complex numbers, we use the real inner product \(\langle u,\,v\rangle =\mathfrak {R}(\bar{u}v)\).

Fix some \(\alpha >0\). Using the definition of the immersion f in Sect. 2.2, for \(\sigma =(\lambda ,\gamma )\in \Sigma _{\epsilon ^\alpha }\) and \((\mu ,\xi )\in Y^k\), we compute the Freéchet derivative of f as

$$\begin{aligned} df(\sigma )(\mu ,\xi )=e^{i\lambda }(i\mu \psi _\gamma -\nabla _x\psi _\gamma \cdot \xi ). \end{aligned}$$
(A1)

This is uniformly bounded in \(\sigma \) as an operator from \(Y^0\rightarrow X^0\), since

$$\begin{aligned} \begin{aligned} \left\Vert df(\sigma )(\mu ,\xi )\right\Vert _{X^0}&\le \mu \left\Vert \psi _\gamma \right\Vert _{X^0}+\left\Vert \nabla _x\psi _\gamma \cdot \xi \right\Vert _{X^0}\\&\le \mu \left( \left\Vert \psi ^{(1)}\right\Vert _{L^2(\omega )}+O(\epsilon ^{2+\alpha /2})\right) \\&\qquad +\left( \left\Vert \nabla \psi ^{(1)}\right\Vert _{L^2(\omega )}+O(\epsilon ^{1+\alpha /2})\right) \left\Vert \xi \right\Vert _{C^0}\\&\le C(\Omega )\left|\log \epsilon \right|^{1/2}\left\Vert \sigma \right\Vert _{Y^0}. \end{aligned}\nonumber \\ \end{aligned}$$

Here we have used (14) and (25). Using (A1) and (39), one can get a uniform estimate for \(d_\sigma df(\sigma ):Y^0\rightarrow L(Y^0, X^0).\)

Write an element in \(Y^k\) as \(\sigma =([\sigma ]_\lambda ,[\sigma ]_\xi )\). The adjoint operator \(df(\sigma )^*\) is determined by the relation

$$\begin{aligned} \begin{aligned}&\langle df(\sigma )(\mu ,\xi ),\,\phi \rangle \\&\quad =\int _x\int _z\langle e^{i\lambda }(i\mu \psi _\gamma -\nabla _x\psi _\gamma )\cdot \xi ,\,\phi \rangle \\&\quad =\mu [df(\sigma )^*\phi ]_\lambda +\int _z\xi \cdot [df(\sigma )^*\phi ]_\gamma \quad (\phi \in X^0). \end{aligned} \end{aligned}$$

Here and in the remaining of this section, it is understood that various integrals are taken over \((x,z)\in \omega \times I=\Omega \).

By Fubini’s Theorem and the identity \(\langle v\cdot w,\, u\rangle =\langle u,\,v\rangle \cdot w\) for real vector w, the above relation implies

$$\begin{aligned} df(\sigma )^*\phi =\left( \int _x\int _z\langle \phi ,\,ie^{i\lambda }\psi _\gamma \rangle , -\int _x\langle {e^{i\lambda }\nabla _x\psi _\gamma (x,\cdot )},\,\phi (x,\cdot )\rangle \right) . \end{aligned}$$
(A2)

This adjoint operator is also uniformly bounded in \(\sigma \) with \(\left\Vert df(\sigma )^*\right\Vert _{X^0\rightarrow Y^0} \le C\left|\log \epsilon \right|^{1/2}.\) Moreover, by Sobolev embedding, \(df(\sigma )^*\) maps \(X^2\) into \(Y^0\). Using (A2) and (39), one can get a uniform estimate for \(d_\sigma df(\sigma )^*:Y^0\rightarrow L(X^0, Y^0).\)

The operator \(\mathcal {J}_\sigma \) is defined in (26). It induces a symplectic form w.r.t. the inner product (19) on the tangent bundle \(T\Sigma \), since

$$\begin{aligned} \langle \mathcal {J}_\sigma \chi ,\,\chi \rangle =\langle g_\sigma ^*J^{-1} g_\sigma \chi ,\,\chi \rangle =\langle J^{-1}g_\sigma \chi ,\,g_\sigma \chi \rangle =0\quad (\chi \in Y^0). \end{aligned}$$

Using (A1)–(A2), we can compute \(\mathcal {J}_\sigma \) explicitly as

$$\begin{aligned} \begin{aligned}&{[}\mathcal {J}_\sigma (\mu ,\xi )]_\lambda =-\int _x\int _z\langle \nabla _x\psi _\gamma \cdot \xi ,\,\psi _\gamma \rangle ,\\&{[}\mathcal {J}_\sigma (\mu ,\xi )]_\gamma =\mu \int _x \langle \nabla _x\psi _\gamma (x,\cdot ),\,\psi _\gamma (x,\cdot )\rangle +\int _x \langle \nabla _x\psi _\gamma (x,\cdot )\cdot J\xi (\cdot ),\,\nabla _x\psi _\gamma (x,\cdot )\rangle . \end{aligned}\nonumber \\ \end{aligned}$$
(A3)

Here we have used the identity that for any complex-valued \(C^1\) function \(\phi \) and vector field \(\chi \) in \(\mathbb {R}^2\), by the Cauchy-Riemann equation,

$$\begin{aligned} -i\nabla \phi \cdot \chi =\nabla {\phi }\cdot J\chi . \end{aligned}$$

One can also write \(\mathcal {J}_\sigma =\mathcal {J}_\sigma (\mu ,\xi (z))\) as the multiplication operator by the matrix \(B_{ij}\), where

$$\begin{aligned} \begin{aligned}&B_{ii}=0\quad (i=1,2,3),\\&B_{12}=-\int _x\int _z\langle \tfrac{\partial \psi _\gamma }{\partial x_1}(x,z),\,\psi _\gamma (x,z)\rangle ,\\&B_{13}=-\int _x\int _z\langle \tfrac{\partial \psi _\gamma }{\partial x_2}(x,z),\,\psi _\gamma (x,z)\rangle ,\\&B_{21}=\int _x\langle \tfrac{\partial \psi _\gamma }{\partial x_1}(x,z),\,\psi _\gamma (x,z)\rangle ,\\&B_{23}=\int _x\langle \tfrac{\partial \psi _\gamma }{\partial x_1}(x,z),\,\tfrac{\partial \psi _\gamma }{\partial x_1}(x,z)\rangle ,\\&B_{31}=\int _x\langle \tfrac{\partial \psi _\gamma }{\partial x_2}(x,z),\,\psi _\gamma (x,z)\rangle ,\\&B_{32}=-\int _x\langle \tfrac{\partial \psi _\gamma }{\partial x_2}(x,z),\,\tfrac{\partial \psi _\gamma }{\partial x_2}(x,z)\rangle . \end{aligned} \end{aligned}$$
(A4)

Here we have used the Cauchy-Riemann equation to eliminate certain cross-terms of the form \(\langle \tfrac{\partial \psi _\gamma }{\partial x_1},\,\tfrac{\partial \psi _\gamma }{\partial x_2}\rangle \).

Using (A4), the fact \(\left\Vert \nabla \psi ^{(1)}\right\Vert _{L^2(\omega )}\sim C(\omega )\left|\log \epsilon \right|^{1/2}\) (see (14) and [24, Chap. V.1]), and the asymptotics (10) for \(\psi ^{(1)}\), one can check that \(\mathcal {J}_\sigma \) is invertible and satisfies the uniform estimates

$$\begin{aligned} \left\Vert \mathcal {J}_\sigma \right\Vert _{Y^k\rightarrow Y^k}&\le C(\omega )\left|\log \epsilon \right|^2, \end{aligned}$$
(A5)
$$\begin{aligned} \left\Vert \mathcal {J}_\sigma ^{-1}\right\Vert _{Y^k\rightarrow Y^k}&\le C(\omega )\left|\log \epsilon \right|^{-2} \end{aligned}$$
(A6)

for every \(k\in \mathbb {N}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J. Adiabatic Approximation for the Motion of Ginzburg-Landau Vortex Filaments. Commun. Math. Phys. 389, 1061–1085 (2022). https://doi.org/10.1007/s00220-021-04258-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04258-w

Navigation