Skip to main content
Log in

Universality for 1d Random Band Matrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider 1d random Hermitian \(N\times N\) block band matrices consisting of \(W\times W\) random Gaussian blocks (parametrized by \(j,k \in \Lambda =[1,n]\cap \mathbb {Z}\), \(N=nW\)) with a fixed entry’s variance \(J_{jk}=W^{-1}(\delta _{j,k}+\beta \Delta _{j,k})\) in each block. Considering the limit \(W, n\rightarrow \infty \), we prove that the behaviour of the second correlation function of such matrices in the bulk of the spectrum, as \(W\gg \sqrt{N}\), is determined by the Wigner–Dyson statistics. The method of the proof is based on the rigorous application of supersymmetric transfer matrix approach developed in Shcherbina and Shcherbina (J Stat Phys 172:627–664, 2018).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bao, Z., Erdös, L.: Delocalization for a class of random block band matrices. Probab. Theory Relat. Fields 167, 673–776 (2017)

  2. Bogachev, L.V., Molchanov, S.A., Pastur, L.A.: On the level density of random band matrices. Mat. Zametki 50(6), 31–42 (1991)

    MATH  Google Scholar 

  3. Bourgade, P.: Random band matrices. Proc. Int. Cong. Math. 3, 2745–2770 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Bourgade, P., Erdős, L., Yau, H.-T., Yin, J.: Universality for a class of random band matrices. Adv. Theor. Math. Phys. 21(3), 739–800 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bourgade, P., Yau, H. T., Yin, J. Random Band Matrices in the Delocalized Phase I: Quantum Unique Ergodicity and Universality. Commun. Pure. Appl. Math. 73(7), 1526–1596 (2020)

  6. Bourgade, P., Yang, F., Yau, H.-T., Yin, J.: Random band matrices in the delocalized phase. II: generalized resolvent estimates. J. Stat. Phys. 174, 1189–1221 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Casati, G., Molinari, L., Israilev, F.: Scaling properties of band random matrices. Phys. Rev. Lett. 64, 1851–1854 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. Disertori, M., Lager, M.: Density of states for random band matrices in two dimensions. Ann. Henri Poincare 18(7), 2367–2413 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Disertori, M., Pinson, H., Spencer, T.: Density of states for random band matrices. Commun. Math. Phys. 232, 83–124 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Efetov, K.: Supersymmetry in Disorder and Chaos. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

  11. Erdös, L., Knowles, A.: Quantum diffusion and eigenfunction delocalization in a random band matrix model. Commun. Math. Phys. 303, 509–554 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. Erdös, L., Knowles, A., Yau, H.-T., Yin, J.: Delocalization and diffusion profile for random band matrices. Commun. Math. Phys. 323, 367–416 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Erdös, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. Probab. Theory Relat. Fields 154, 341–407 (2012)

    Article  MathSciNet  Google Scholar 

  14. Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a \(\sigma \)-model approach. Phys. Rev. Lett. 67, 2405–2409 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fyodorov, Y.V., Mirlin, A.D.: Statistical properties of eigenfunctions of random quasi 1d one-particle Hamiltonians. Int. J. Mod. Phys. B 8, 3795–3842 (1994)

    Article  ADS  Google Scholar 

  16. He, Y., Marcozzi, M. Diffusion profile for random band matrices: A short proof. J. Stat. Phys. 177, 666–716 (2019)

  17. Molchanov, S.A., Pastur, L.A., Khorunzhii, A.M.: Distribution of the eigenvalues of random band matrices in the limit of their infinite order. Theor. Math. Phys. 90, 108–118 (1992)

    Article  MathSciNet  Google Scholar 

  18. Peled, R., Schenker, J., Shamis, M., Sodin, A.: On the Wegner orbital model. Int. Math. Res. Not. 4, 1030–1058 (2019)

    Article  MathSciNet  Google Scholar 

  19. Schäfer, L., Wegner, F.: Disordered system with \(n\) orbitals per site: Lagrange formulation, hyperbolic symmetry, and Goldstone modes. Z. Phys. B 38, 113–126 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  20. Schenker, J.: Eigenvector localization for random band matrices with power law band width. Commun. Math. Phys. 290, 1065–1097 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Shcherbina, M., Shcherbina, T.: Transfer matrix approach to 1d random band matrices: density of states. J. Stat. Phys. 164, 1233–1260 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Shcherbina, M., Shcherbina, T.: Characteristic polynomials for 1d random band matrices from the localization side. Commun. Math. Phys. 351, 1009–1044 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. Shcherbina, M., Shcherbina, T.: Universality for 1d random band matrices: sigma-model approximation. J. Stat. Phys. 172, 627–664 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Shcherbina, M., Shcherbina, T.: Transfer matrix approach to 1d random band matrices. Proc. Int. Cong. Math. 2, 2673–2694 (2018)

    MATH  Google Scholar 

  25. Shcherbina, T.: On the second mixed moment of the characteristic polynomials of the 1D band matrices. Commun. Math. Phys. 328, 45–82 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  26. Shcherbina, T.: Universality of the local regime for the block band matrices with a finite number of blocks. J. Stat. Phys. 155(3), 466–499 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  27. Sodin, S.: The spectral edge of some random band matrices. Ann. Math. 173(3), 2223–2251 (2010)

    Article  MathSciNet  Google Scholar 

  28. Spencer, T.: SUSY statistical mechanics and random band matrices. Quantum many body system, Cetraro, Italy 2010, Lecture Notes in Mathematics 2051 (CIME Foundation subseries) (2012)

  29. Vilenkin, N. Ja.: Special Functions and the Theory of Group Representations. Translations of Mathematical Monographs, AMS 1968; 613 p

  30. Wegner, F.J.: Disordered system with \(n\) orbitals per site: \(n \rightarrow \infty \) limit. Phys. Rev. B 19, 783–792 (1979)

    Article  ADS  Google Scholar 

  31. Yang, F., Yin, J.: Random band matrices in the delocalized phase, III: averaging fluctuations. Probab. Theory Relat. Fields (2020). https://doi.org/10.1007/s00440-020-01013-5

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatyana Shcherbina.

Additional information

Communicated by L. Erdos

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by NSF Grant DMS-1700009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbina, M., Shcherbina, T. Universality for 1d Random Band Matrices. Commun. Math. Phys. 385, 667–716 (2021). https://doi.org/10.1007/s00220-021-04135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04135-6

Navigation