Skip to main content
Log in

Kadomtsev–Petviashvili Turning Points and CKP Hierarchy

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A characterization of the Kadomtsev–Petviashvili hierarchy of type C (CKP) in terms of the KP tau-function is given. Namely, we prove that the CKP hierarchy can be identified with the restriction of odd times flows of the KP hierarchy on the locus of turning points of the second flow. The notion of CKP tau-function is clarified and connected with the KP tau function. Algebraic–geometrical solutions and in particular elliptic solutions are discussed in detail. A new identity for theta-functions of curves with holomorphic involution having fixed points is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, I. Funk. Anal. i ego Pril. 8(3), 43–53 (1974)

    MATH  Google Scholar 

  2. Sato, M.: Soliton equations and the universal Grassmann manifold. Math. Notes. Series, vol. 18, Sophia University, Tokyo (1984)

  3. Takebe, T.: From general Zakharov–Shabat equations to the KP and the Toda lattice hierarchies. Int. J. Mod. Phys. A 7(supp01b), 923–939 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. Jimbo, M., Miwa, T.: Soliton equations and infinite dimensional Lie algebras. Publ. RIMS Kyoto Univ. 19, 943–1001 (1983)

    Article  Google Scholar 

  5. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Jimbo, M., Miwa, T. (eds.) Nonlinear Integrable Systems—Classical Theory and Quantum theory, pp. 39–119. World Scientific, Singapore (1983)

    Google Scholar 

  6. Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: KP hierarchy of orthogonal and symplectic type—transformation groups for soliton equations VI. J. Phys. Soc. Jpn. 50, 3813–3818 (1981)

    Article  ADS  Google Scholar 

  7. Dimakis, A., Müller-Hoissen, F.: BKP and CKP revisited: the odd KP system. Inverse Probl. 25, 045001 (2009). (arXiv:0810.0757)

    Article  ADS  MathSciNet  Google Scholar 

  8. Chang, L., Wu, C.-Z.: Tau function of the CKP hierarchy and non-linearizable Virasoro symmetries. Nonlinearity 26, 2577–2596 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cheng, J., He, J.: The “ghost’’ symmetry in the CKP hierarchy. J. Geom. Phys. 80, 49–57 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. van de Leur, J., Orlov, A., Shiota, T.: CKP hierarchy, bosonic tau function and bosonization formulae. SIGMA 8, 036 (2012). (arXiv:1102.0087)

    MathSciNet  MATH  Google Scholar 

  11. Krichever, I.: Integration of nonlinear equations by methods of algebraic geometry. Funkt. Anal. i ego Pril. 11, 15–31 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Krichever, I.: Methods of algebraic geometry in the theory of non-linear equations. Russ. Math. Surv. 32, 185–213 (1977)

    Article  Google Scholar 

  13. Airault, H., McKean, H.P., Moser, J.: Rational and elliptic solutions of the Korteweg–De Vries equation and a related many-body problem. Commun. Pure Appl. Math. 30, 95–148 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  14. Calogero, F.: Solution of the one-dimensional \(N\)-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–436 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  15. Calogero, F.: Exactly solvable one-dimensional many-body systems. Lett. Nuovo Cimento 13, 411–415 (1975)

    Article  MathSciNet  Google Scholar 

  16. Moser, J.: Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math. 16, 197–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  17. Krichever, I.M.: Rational solutions of the Kadomtsev–Petviashvili equation and integrable systems of \(N\) particles on a line. Funct. Anal. Appl. 12(1), 59–61 (1978)

    Article  Google Scholar 

  18. Chudnovsky, D.V., Chudnovsky, G.V.: Pole expansions of non-linear partial differential equations. Nuovo Cimento 40B, 339–350 (1977)

    Article  ADS  Google Scholar 

  19. Krichever, I.M.: Elliptic solutions of the Kadomtsev–Petviashvili equation and integrable systems of particles. Funk. Anal. i Ego Pril. 14:4, 45–54 (1980) (in Russian); English translation: Functional Analysis and Its Applications 14:4, 282–290 (1980)

  20. Krichever, I.: Elliptic solutions to difference non-linear equations and nested Bethe ansatz equations. In: van Diejen, J.F., Vinet, L. (eds.) CRM Series in Mathematical Physics, Calogero–Moser–Sutherland Models, pp. 249–271. arXiv:solv-int/9804016

  21. Rudneva, D., Zabrodin, A.: Dynamics of poles of elliptic solutions to BKP equation. J. Phys. A Math. Theor. 53, 075202 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zabrodin, A.: Elliptic solutions to integrable nonlinear equations and many-body systems. J. Geom. Phys. 146, 103506 (2019)

    Article  MathSciNet  Google Scholar 

  23. Krichever, I., Nekrasov, N.: Towards Lefschets thimbles in sigma models, II (to appear)

  24. Fay, J.D.: Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics, vol. 352. Springer, Berlin (1973)

    Book  Google Scholar 

  25. Mumford, D.: Tata Lectures on Theta I, II, Progress in Mathematics, Vol. 28, 43. Birkhäuser, Boston (1983) (1984)

  26. Cherednik, I.: Differential equations for the Baker–Akhiezer functions of algebraic curves. Funct. Anal. Appl. 12, 45–52 (1978)

    Article  Google Scholar 

  27. Krichever, I., Shiota, T.: Soliton Equations and the Riemann–Schottky Problem. Handbook of Moduli, Vol. II, 205–258, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville (2013)

  28. Dubrovin, B.: Theta-functions and nonlinear equations. Uspekhi Mat. Nauk 36, 12–72 (1981)

    MathSciNet  Google Scholar 

  29. Manakov, S.: Method of inverse scattering problem and two-dimensional evolution equations. Uspekhi Mat. Nauk 31, 245–246 (1976)

    MathSciNet  Google Scholar 

  30. Krichever, I.: The spectral theory of “finite-gap” non-stationary Schrödinger operators. The non-stationary Peierls model. Funk. Anal. i ego Pril. 20:3, 42–54 (1986)

  31. Zabrodin, A.: KP hierarchy and trigonometric Calogero–Moser hierarchy. J. Math. Phys. 61, 043502 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Shiota, T.: Calogero–Moser hierarchy and KP hierarchy. J. Math. Phys. 35, 5844–5849 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  33. Natanzon, S.: Differential equations for Prym theta-functions. Reality criteria for two-dimensional finite-gap potential Schrödinger operators. Funk. Anal. i ego Pril. 26, 17–26 (1992)

  34. Krichever, I., Phong, D.H.: On the integrable geometry of soliton equations and \(N=2\) supersymmetric gauge theories. J. Differ. Geom. 45(2), 349–389 (1997)

    Article  MathSciNet  Google Scholar 

  35. Krichever, I., Phong, D.H.: Symplectic forms in the theory of solitons. In: Terng, C.L., Uhlenbeck, K. (eds) Surveys in Differential Geometry, vol. IV. International Press, pp. 239–313 (1998). arXiv:hep-th/9708170

  36. Natanzon, S.: Formulas for \(A_n\) and \(B_n\)-solutions of WDVV equations. J. Geom. Phys. 39, 323–336 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  37. Natanzon, S.: Witten solution for the Gelfand-Dikii hierarchy. Funk. Anal. i ego Prilozh. 37:1, 25–37 (2003) (English translation: Func. Anal. Appl. 37:1, 2131 (2003))

  38. Natanzon, S., Zabrodin, A.: Formal solution to the KP hierarchy. J. Phys. A Math. Theor. 49, 145206 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank S. Natanzon for discussions. The research has been funded within the framework of the HSE University Basic Research Program and the Russian Academic Excellence Project ’5-100’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zabrodin.

Additional information

Communicated by J.Gier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 2.1

In this appendix we give a sketch of proof of Lemma 2.1, i.e. we are going to prove that the conditions (2.53) and

$$\begin{aligned} \partial _x\partial _{t_4}\log \tau ^{\mathrm{KP}}\Bigr |_{\mathbf{t}_{\mathrm{e}}=0} =\partial _x\partial _{t_6}\log \tau ^{\mathrm{KP}}\Bigr |_{\mathbf{t}_{\mathrm{e}}=0} =\ldots =0. \end{aligned}$$
(A1)

follow from the constraint

$$\begin{aligned} \partial _{t_2}\log \tau ^{\mathrm{KP}}\Bigr |_{\mathbf{t}_{\mathrm{e}}=0}=0 \quad \text{ for } \text{ all } t_1, t_3, t_5, \ldots \end{aligned}$$
(A2)

(see (2.48)) provided \(\tau ^{\mathrm{KP}}\) is a KP tau-function, i.e. satisfies all the equations of the KP hierarchy.

We use the representation of the KP hierarchy in the unfolded form suggested in [36, 37], see also section 3.2 of [38]. Set \(F=\log \tau ^{\mathrm{KP}}\) and \(F_{k_1,\ldots ,\, k_m}=\partial _{t_{k_1}}\ldots \partial _{t_{k_m}}\! F\). Then the KP hierarchy can be written in the form

$$\begin{aligned} F_{k_1,\ldots , \, k_m}=\sum _{n\ge 1}\sum R_{k_1 ,\ldots ,\, k_m}^{(n)} \! \left( \begin{array}{lll} s_1 &{} \ldots &{} s_n \\ r_1 &{} \ldots &{} r_n \end{array} \right) \partial _x^{r_1}F_{s_1}\ldots \partial _x^{r_n}F_{s_n}, \end{aligned}$$
(A3)

where \(m\ge 2\) and \(\displaystyle {R_{k_1, \ldots ,\, k_m}^{(n)} \! \left( \begin{array}{lll} s_1 &{} \ldots &{} s_n \\ r_1 &{} \ldots &{} r_n \end{array} \right) }\) are universal rational coefficients. The second sum is taken over all matrices \(\displaystyle {\left( \begin{array}{lll} s_1 &{} \ldots &{} s_n \\ r_1 &{} \ldots &{} r_n \end{array} \right) }\) such that \(s_i, r_i \ge 1\) with the conditions

$$\begin{aligned} \sum _{i=1}^n (s_i+r_i)=\sum _{i=1}^m k_i, \qquad \sum _{i=1}^n r_i \ge n+m-2. \end{aligned}$$
(A4)

For example [36],

$$\begin{aligned} F_{2,3}=\frac{3}{2}\, \partial _xF_4 -\frac{3}{2}\, \partial _x^3F_2 -3\partial _x F_2 \, \partial _x^2F. \end{aligned}$$
(A5)

From the fact that if \(\tau ^{\mathrm{KP}}(x, \mathbf{t})\) is a tau-function, then \(\tau ^{\mathrm{KP}}(-x, -\mathbf{t})\) is a tau-function, too (this is a corollary of the Hirota equations), it follows that

$$\begin{aligned} \text{ if } \displaystyle {\sum _{i=1}^n (r_i-1)-m\equiv 1}\hbox { (mod 2), then }\displaystyle {R_{k_1, \ldots ,\, k_m}^{(n)} \! \left( \begin{array}{lll} s_1 &{} \ldots &{} s_n \\ r_1 &{} \ldots &{} r_n \end{array} \right) =0.} \end{aligned}$$
(A6)

First we prove (A1). The proof is by induction. We assume that (A1) is true for \(\partial _xF_{2}, \ldots , \partial _xF_{2k}\) (this is certainly true if \(k=1\)) and will deduce from (A3) that it is true for \(k\rightarrow k+1\). From (A2) and (A3) at \(m=2\) we have (at \(\mathbf{t}_{\mathrm{e}}=0\)):

$$\begin{aligned} \begin{array}{c} \displaystyle { 0=F_{2, \, 2k+1}=\sum _{s_1+r_1=2k+3}R^{(1)}_{2, \, 2k+1} \left( \begin{array}{c} s_1\\ r_1\end{array} \right) \partial _x^{r_1}F_{s_1}} \\ \\ \displaystyle {+ \sum _{s_1+s_2+r_1+r_2=2k+3}R^{(2)}_{2, \, 2k+1} \left( \begin{array}{cc} s_1&{}s_2\\ r_1&{}r_2\end{array} \right) \partial _x^{r_1}F_{s_1}\partial _x^{r_2}F_{s_2}+\ldots } \end{array} \end{aligned}$$
(A7)

Separating the term with \(r_1=1\) in the first sum in the right hand side of (A7), we write it as

$$\begin{aligned} 0=F_{2, \, 2k+1}=R^{(1)}_{2, \, 2k+1} \left( \begin{array}{c} 2k+2\\ 1\end{array} \right) \partial _x F_{2k+2} \,\, +\; \text{ all } \text{ the } \text{ rest }. \end{aligned}$$
(A8)

Now, recalling the condition (A6), we see that the non-zero coefficients at the different terms in the right hand side are when \(\displaystyle {\sum _{i=1}^n s_i =n-1 \; \text{(mod } \text{2) }}\). From this it follows that for both odd and even n at least one of the \(s_i\)’s must be even (and less then \(2k+2\)). Therefore, “all the rest” terms vanish by the induction assumption. Since the coefficient \(\displaystyle {R^{(1)}_{2, \, 2k+1} \left( \begin{array}{c} 2k+2\\ 1\end{array} \right) }\) is not equal to zero (see [36]), we conclude from (A8) that \(\partial _x F_{2k+2}=0\).

Next we are going to prove that if \(\partial _xF_{2k}=0\) for all \(k\ge 1\) and all \(t_1, t_3, \ldots \), then \(F_{k_1,\ldots ,\, k_m}=0\) for all even \(k_1, \ldots , k_m\) and odd \(m\ge 3\). As soon as \(m+1\) and all \(k_i\)’s are even, we can, using (A4), rewrite the condition (A6) in the form

$$\begin{aligned} \sum _{i=1}^n s_i \equiv n \,\,\, \text{(mod } \text{2) }. \end{aligned}$$
(A9)

But if at least one of \(s_i\) in (A3) is even, then the corresponding term vanishes because \(F_{2k}=0\) for all \(k\ge 1\). Therefore, all the \(s_i\)’s must be odd, i.e., \(s_i=2l_i+1\) and so the condition (A9) is satisfied which means that the coefficient \(\displaystyle {R_{k_1, \ldots ,\, k_m}^{(n)} \! \left( \begin{array}{lll} s_1 &{} \ldots &{} s_n \\ r_1 &{} \ldots &{} r_n \end{array} \right) }\) vanishes. This proves that \(F_{k_1, \ldots ,\, k_m}=0\).

Appendix B: Proof of Eq. (4.21)

Here we prove the matrix identity (4.21).

First of all we note that \(\dot{L}_{ik}=-(\dot{x}_i-\dot{x}_k)\Phi '(x_i-x_k)\), and, therefore, we have \(\dot{L} =-[\dot{X}, B]\). To transform the commutators \([L,B]+[L,D]\), we use the identity

$$\begin{aligned} \Phi (x )\Phi '(y)-\Phi (y)\Phi '(x)=\Phi (x+y)(\wp (x) -\wp (y)). \end{aligned}$$
(B1)

With the help of it we get for \(i\ne k\)

$$\begin{aligned}&-\Bigl ([L,B]+[L,D]\Bigr )_{ik} \\&\quad =\, \sum _{j\ne i,k}\Phi (x_i-x_j)\Phi '(x_j-x_k)- \sum _{j\ne ,k}\Phi ' (x_i-x_j)\Phi (x_j-x_k) \\&\qquad +\, \Phi (x_i-x_k)\Bigl (\sum _{j\ne k}\wp (x_j-x_k)-\sum _{j\ne i}\wp (x_i-x_j)\Bigr )=0, \end{aligned}$$

so we see that \([L,B]+[L,D]\) is a diagonal matrix. To find its matrix elements, we use the limit of (B1) at \(y=-x\):

$$\begin{aligned} \Phi (x)\Phi '(-x)-\Phi (-x)\Phi '(x)=\wp '(x) \end{aligned}$$

which leads to

$$\begin{aligned}&-\Bigl ([L,B]+[L,D]\Bigr )_{ii} \\&\quad =\, \sum _{j\ne i}\Bigl (\Phi (x_i-x_j)\Phi ' (x_j-x_i)-\Phi ' (x_i-x_j)\Phi (x_j-x_i)\Bigr ) =\sum _{j\ne i}\wp '(x_i-x_j)=D'_{ii}, \end{aligned}$$

so we finally obtain the matrix identity

$$\begin{aligned}{}[L,B]+[L,D]=-D'. \end{aligned}$$
(B2)

Combining the derivatives of (B1) w.r.t. x and y, we obtain the identity

$$\begin{aligned} \Phi (x)\Phi ''(y)-\Phi (y)\Phi ''(x)=2\Phi '(x+y)(\wp (x)-\wp (y)) +\Phi (x+y)(\wp '(x)-\wp '(y))\nonumber \\ \end{aligned}$$
(B3)

which allows us to prove the matrix identity

$$\begin{aligned}{}[L,C]=-2[D, B]+D'L+LD', \end{aligned}$$
(B4)

which is used, together with (B2), to transform \(\dot{L}+[L,M]\) to the form (4.21).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krichever, I., Zabrodin, A. Kadomtsev–Petviashvili Turning Points and CKP Hierarchy. Commun. Math. Phys. 386, 1643–1683 (2021). https://doi.org/10.1007/s00220-021-04119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04119-6

Navigation