Skip to main content
Log in

Limiting Entry and Return Times Distribution for Arbitrary Null Sets

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe an approach that allows us to deduce the limiting return times distribution for arbitrary sets to be compound Poisson distributed. We establish a relation between the limiting return times distribution and the probability of the cluster sizes, where clusters consist of the portion of points that have finite return times in the limit where random return times go to infinity. In the special case of periodic points we recover the known Pólya–Aeppli distribution which is associated with geometrically distributed cluster sizes. We apply this method to several examples the most important of which is synchronisation of coupled map lattices. For the invariant absolutely continuous measure we establish that the returns to the diagonal is compound Poisson distributed where the coefficients are given by certain integrals along the diagonal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadi, M.: Hitting, returning and the short correlation function. Bull. Braz. Math. Soc. 37(4), 1–17 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Abadi, M., Freitas, A.C.M., Freitas, J.M.: Dynamical counterexamples regarding the extremal index and the mean of the limiting cluster size distribution. Preprint arXiv:1808.02970

  3. Abadi, M., Freitas, A.C.M., Freitas, J.M.: Clustering indices and decay of correlations in non-Markovian models. Preprint arXiv:1810.03216

  4. Afraimovich, V.S., Bunimovich, L.A.: Which hole is leaking the most: a topological approach to study open systems. Nonlinearity 23, 643–656 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Caby, T., Faranda, D., Vaienti, S., Yiou, P.: On the computation of the extremal index for time series. J. Stat. Phys https://doi.org/10.1007/s10955-019-02423-z

  6. Chazottes, J.-R., Collet, P.: Poisson approximation for the number of visits to balls in nonuniformly hyperbolic dynamical systems. Ergod. Theory Dyn. Syst. 33, 49–80 (2013)

    MATH  Google Scholar 

  7. Coelho, Z., Collet, P.: Asymptotic limit law for the close approach of two trajectories in expanding maps of the circle. Prob. Theory Relat. Fields 99, 237–250 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Faranda, D., Ghoudi, H., Guiraud, P., Vaienti, S.: Extreme value theory for synchronization of coupled map lattices. Nonlinearity 31(7), 3326–3358 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Freitas, A.C.M., Freitas, J.M., Todd, M.: The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics. Commun. Math. Phys. 321(2), 483–527 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Freitas, J.M., Haydn, N., Nicol, M.: Convergence of rare event point processes to the Poisson process for planar billiards. Nonlinearity 27(7), 1669–1687 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Freitas, A.C.M., Freitas, J.M., Magalhães, M.: Convergence of marked point processes of excesses for dynamical systems. J. Eur. Math. Soc. (JEMS) 20(9), 2131–2179 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Faranda, D., Moreira Freitas, A.C., Milhazes Freitas, J., Holland, M., Kuna, T., Lucarini, V., Nicol, M., Todd, M., Vaienti, S.: Extremes and Recurrence in Dynamical Systems. Wiley, New York (2016)

    MATH  Google Scholar 

  13. Gallo, S., Haydn, N., Vaienti, S.: (in preparation)

  14. Haydn, N., Psiloyenis, Y.: Return times distribution for Markov towers with decay of correlations. Nonlinearity 27(6), 1323–1349 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Haydn, N., Vaienti, S.: The distribution of return times near periodic orbits. Probab. Theory Relat. Fields 144, 517–542 (2009)

    MATH  Google Scholar 

  16. Haydn, N., Wasilewska, K.: Limiting distribution and error terms for the number of visits to balls in non-uniformly hyperbolic dynamical systems. Discrete Contin. Dyn. Syst. 36(5), 2585–2611 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Haydn, N., Yang, F.: A derivation of the Poisson law for returns of smooth maps with certain geometrical properties. In: Contemporary Mathematics Proceedings in memoriam Chernov (2017)

  18. Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahr. verw. Geb. 69, 461–478 (1985)

    MathSciNet  MATH  Google Scholar 

  19. Kifer, Y., Rapaport, A.: Poisson and compound Poisson approximations in conventional and nonconventional setups. Probab. Theory Relat. Fields 160, 797–831 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Kifer, Y., Yang, F.: Geometric law for numbers of returns until a hazard under \(\phi \)-mixing, arXiv:1812.09927

  21. Leadbetter, M.R.: Extremes and local dependence in stationary sequences. Z. Wahrsch. verw. Gebiete 65(2), 291–306 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Pitskel, B.: Poisson law for Markov chains. Ergod. Theory Dyn. Syst. 11, 501–513 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Saussol, B., Pène, F.: Back to balls in billiards. Commun. Math. Phys. 293(3), 837–866 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Saussol, B., Pène, F.: Poisson law for some nonuniformly hyperbolic dynamical systems with polynomial rate of mixing. Ergod. Theory Dyn. Syst. 36(8), 2602–2626 (2016)

    MATH  Google Scholar 

  25. Saussol, B., Pène, F.: Spatio-temporal Poisson processes for visits to small sets. arXiv:1803.06865

  26. Saussol, B.: Absolutely continuous invariant measures for multidimensional expanding maps. Isr. J. Math. 116, 223–248 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Smith, R.L.: A counterexample concerning the extremal index. Adv. Appl. Probab. 20(3), 681–683 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Yang, F.: Rare event process and entry times distribution for arbitrary null sets on compact manifolds. Preprint 2019 arXiv:1905.09956

Download references

Acknowledgements

SV thanks the Laboratoire International Associé LIA LYSM, the INdAM (Italy), the UMI-CNRS 3483, Laboratoire Fibonacci (Pisa) where this work has been completed under a CNRS delegation and the Centro de Giorgi in Pisa for various supports. NH thanks the University of Toulon and the Simons Foundation (Award ID 526571) for support. The authors thanks the anonimous referees whose comments and suggestion helped them to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolai Haydn.

Additional information

Communicated by C. Liverani

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haydn, N., Vaienti, S. Limiting Entry and Return Times Distribution for Arbitrary Null Sets. Commun. Math. Phys. 378, 149–184 (2020). https://doi.org/10.1007/s00220-020-03795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03795-0

Navigation