Skip to main content
Log in

Bounds on the Geometric Complexity of Optimal Centroidal Voronoi Tesselations in 3D

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Gersho’s conjecture in 3D asserts the asymptotic periodicity and structure of the optimal centroidal Voronoi tessellation. This relatively simple crystallization problem remains to date open. We prove bounds on the geometric complexity of optimal centroidal Voronoi tessellations as the number of generators tends to infinity. Combined with an approach of Gruber in 2D, these bounds reduce the resolution of the 3D Gersho’s conjecture to a finite, albeit very large, computation of an explicit convex problem in finitely many variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For example, Hales’ celebrated resolution of the Honeycomb Conjecture in [18].

References

  1. Barnes, E.S., Sloane, N.J.A.: The optimal lattice quantizer in three dimensions. SIAM J. Algebr. Discrete Methods 4, 30–41 (1983)

    MathSciNet  MATH  Google Scholar 

  2. Blanc, X., Lewin, M.: The crystallization conjecture: a review. EMS Surv. Math. Sci. 2(2), 225–306 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Bourne, D.P., Schmitzer, B., Wirth, B.: Semi-discrete unbalanced optimal transport and quantization. Preprint (2018)

  4. Cohn, H., Kumar, A., Miller, S.D., Radchenko, D., Viazovska, M.S.: The sphere packing problem in dimension 24. Ann. Math. (2) 183(3), 1017–1033 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Cohn H., Kumar A., Miller S.D., Radchenko D., Viazovska, M.S.: Universal optimality of the \(E_8\) and Leech lattices and interpolation formulas. https://arxiv.org/pdf/1902.05438.pdf

  6. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften, vol. 290, 3rd edn. Springer, Berlin (1998)

    Google Scholar 

  7. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Du, Q., Wang, D.: The optimal centroidal Voronoi tessellations and the Gersho’s conjecture in the three-dimensional space. Comput. Math. Appl. 49, 1355–1373 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Dwyer, R.A.: The expected number of \(k\)-faces of a Voronoi diagram. Comput. Math. Appl. 26–5, 13–19 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Weinan, E., Li, D.: On the crystallization of 2D hexagonal lattices. Commun. Math. Phys. 286(3), 1099–1140 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Farmer, B., Esedoglu, S., Smereka, P.: Crystallization for a Brenner-like potential. Commun. Math. Phys. 349(3), 1029–1061 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Fejes Tóth, G.: Lagerungen in der Ebene, auf der Kugel und im Raum, 2nd edn. Springer, Berlin (1972)

    MATH  Google Scholar 

  13. Flatley, L.C., Theil, F.: Face-centered cubic crystallization of atomistic configurations. Arch. Ration. Mech. Anal. 218(1), 363–416 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Gersho, A.: Asymptotically optimal block quantization. IEEE Trans. Inform. Theory 25, 373–380 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Gruber, P.M.: A short analytic proof of Fejes Toth’s theorem on sums of moments. Aequ. Math. 58, 291–295 (1999)

    MATH  Google Scholar 

  16. Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186, 456–497 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Gruber, P.M.: Convex and Discrete Geometry, Springer Grundlehren der Mathematischen Wissenschaften, vol. 336. Springer, Berlin (2007)

    Google Scholar 

  18. Hales, T.C.: The Honeycomb conjecture. Discrete Comput. Geom. 25–1, 1–22 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Heitmann, R.C., Radin, C.: The ground state for sticky discs. J. Stat. Phys. 33, L804 (1994)

    Google Scholar 

  20. Newman, D.J.: The hexagon theorem. IEEE Trans. Inform. Theory 28, 137–139 (1982)

    MathSciNet  MATH  Google Scholar 

  21. Radin, C.: Low temperature and the origin of crystal symmetry. Int. J. Mod. Phys. B 1, 1157–1191 (1987)

    ADS  Google Scholar 

  22. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific Publishing, Singapore (1999)

    MATH  Google Scholar 

  23. Theil, F.: A proof of crystallization in two dimensions. Commun. Math. Phys. 262(1), 209–236 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Viazovska, M.S.: The sphere packing problem in dimension 8. Ann. Math. (2) 183(3), 991–1015 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Villani, C.: Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Google Scholar 

  26. Weaire, D., Phelan, R.: A counter-example to Kelvin’s conjecture on minimal surfaces. Philos. Mag. Lett. 69(2), 107–110 (1994)

    ADS  MATH  Google Scholar 

  27. Zador, P.L.: Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Trans. Inform. Theory 28, 139–148 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for their many comments which improved the manuscript; in particular, one of the referees provided us with the simple proof of (8) in Sect. 4.1. This work was begun while Lu was a postdoctoral fellow at McGill University. He would like to thank the CRM (Centre de Recherches Mathématique) for their partial support during this period, and Lakehead University for their partial support through its startup and RDF fundings. Both authors acknowledge the support of NSERC through their Discovery Grants Program. The authors would also like to thank David Bourne for his comments on a previous draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rustum Choksi.

Additional information

Communicated by R. Seiringer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choksi, R., Lu, X.Y. Bounds on the Geometric Complexity of Optimal Centroidal Voronoi Tesselations in 3D. Commun. Math. Phys. 377, 2429–2450 (2020). https://doi.org/10.1007/s00220-020-03789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03789-y

Navigation