Skip to main content
Log in

On the Energy Cascade of 3-Wave Kinetic Equations: Beyond Kolmogorov–Zakharov Solutions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In weak turbulence theory, the Kolmogorov–Zakharov spectra is a class of time-independent solutions to the kinetic wave equations. In this paper, we construct a new class of time-dependent isotropic solutions to the decaying turbulence problems (whose solutions are energy conserved), with general initial conditions. These solutions exhibit the interesting property that the energy is cascaded from small wavenumbers to large wavenumbers. We can prove that starting with a regular initial condition whose energy at the infinity wave number \(|p|=\infty \) is 0, as time evolves, the energy is gradually accumulated at \(\{|p|=\infty \}\). Finally, all the energy of the system is concentrated at \(\{|p|=\infty \}\) and the energy function becomes a Dirac function at infinity \(E\delta _{\{|p|=\infty \}}\), where E is the total energy. The existence of this class of solutions is, in some sense, the first complete rigorous mathematical proof based on the kinetic description for the energy cascade phenomenon for waves with quadratic nonlinearities. We only represent in this paper the analysis of the statistical description of acoustic waves (and equivalently capillary waves). However, our analysis works for other cases as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, R., Gamba, I.M., Tran, M.-B.: The Cauchy problem and BEC stability for the quantum Boltzmann-Gross-Pitaevskii system for bosons at very low temperature. arXiv preprint arXiv:1609.07467 (2016)

  2. Anglin, J.R., Ketterle, W.: Bose–Einstein condensation of atomic gases. Nature 416(6877), 211–218 (2002)

    ADS  Google Scholar 

  3. Arkeryd, Leif: On the Boltzmann equation. I. Existence. Arch. Ration. Mech. Anal. 45, 1–16 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Arlotti, L., Banasiak, J.: Strictly substochastic semigroups with application to conservative and shattering solutions to fragmentation equations with mass loss. J. Math. Anal. Appl. 293(2), 693–720 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Balk, A.M., Nazarenko, S.V.: Physical realizability of anisotropic weak-turbulence Kolmogorov spectra. Sov. Phys. JETP 70, 1031–1041 (1990)

    MathSciNet  Google Scholar 

  6. Ball, J.M., Carr, J.: The discrete coagulation–fragmentation equations: existence, uniqueness, and density conservation. J. Stat. Phys. 61(1–2), 203–234 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Banasiak, J., Lamb, W.: Global strict solutions to continuous coagulation–fragmentation equations with strong fragmentation. Proc. R. Soc. Edinb. Sect. A Math. 141(3), 465–480 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Banasiak, J., Lamb, W.: Analytic fragmentation semigroups and continuous coagulation–fragmentation equations with unbounded rates. J. Math. Anal. Appl. 391(1), 312–322 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Benney, D.J., Newell, A.C.: Random wave closures. Stud. Appl. Math. 48(1), 29–53 (1969)

    MATH  Google Scholar 

  10. Benney, D.J., Saffman, P.G.: Nonlinear interactions of random waves in a dispersive medium. Proc. R. Soc. Lond. A 289(1418), 301–320 (1966)

    ADS  Google Scholar 

  11. Bertoin, J.: Random Fragmentation and Coagulation Processes, vol. 102. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  12. Bonacini, M., Niethammer, B., Velázquez, J.J.L.: Self-similar solutions to coagulation equations with time-dependent tails: the case of homogeneity one. Arch. Ration. Mech. Anal. 43, 82–117 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Canizo, J.A., Mischler, S., Mouhot, C.: Rate of convergence to self-similarity for Smoluchowski’s coagulation equation with constant coefficients. SIAM J. Math. Anal. 41(6), 2283–2314 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Connaughton, C.: Numerical solutions of the isotropic 3-wave kinetic equation. Phys. D Nonlinear Phenom. 238(23–24), 2282–2297 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Connaughton, C., Krapivsky, P.L.: Aggregation–fragmentation processes and decaying three-wave turbulence. Phys. Rev. E 81(3), 035303 (2010)

    ADS  Google Scholar 

  16. Connaughton, C., Newell, A.C.: Dynamical scaling and the finite-capacity anomaly in three-wave turbulence. Phys. Rev. E 81(3), 036303 (2010)

    ADS  Google Scholar 

  17. Costa, F.P.: Existence and uniqueness of density conserving solutions to the coagulation–fragmentation equations with strong fragmentation. J. Math. Anal. Appl. 192, 892–914 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Craciun, G., Tran, M.-B.: A reaction network approach to the convergence to equilibrium of quantum Boltzmann equations for Bose gases. arXiv preprint arXiv:1608.05438 (2016)

  19. Degond, P., Liu, J.-G., Pego, R.L.: Coagulation–fragmentation model for animal group-size statistics. J. Nonlinear Sci. 27(2), 379–424 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Drake, R.L.: A general mathematical survey of the coagulation equation. Topics in current aerosol research (part 2). In: Hidy, G.M., Brock, J.R. (eds.) International Reviews in Aerosol Physics and Chemistry, vol. 3. Pergamon Press, New York (1972)

    Google Scholar 

  21. Dubovskii, P.B., Stewart, I.W.: Existence, uniqueness and mass conservation for the coagulation–fragmentation equation. Math Methods Appl Sci 19(7), 571–591 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Eibeck, A., Wagner, W.: Stochastic particle approximations for Smoluchoski’s coagualtion equation. Ann. Appl. Probab. 11(4), 1137–1165 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Escobedo, M., Laurençot, P., Mischler, S., Perthame, B.: Gelation and mass conservation in coagulation–fragmentation models. J. Differ. Equ. 195(1), 143–174 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Escobedo, M., Mischler, S.: Dust and self-similarity for the Smoluchowski coagulation equation. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 23, 331–362 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Escobedo, M., Mischler, S., Perthame, B.: Gelation in coagulation and fragmentation models. Commun. Math. Phys. 231(1), 157–188 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Escobedo, M., Mischler, S., Ricard, M.R.: On self-similarity and stationary problem for fragmentation and coagulation models. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 22, 99–125 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Escobedo, M., Tran, M.-B.: Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinet. Relat. Models 8(3), 493–531 (2015)

    MathSciNet  MATH  Google Scholar 

  28. Escobedo, M., Velázquez, J.J.L.: Finite time blow-up and condensation for the bosonic Nordheim equation. Invent. Math. 200(3), 761–847 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Escobedo, M., Velázquez, J.J.L.: On the theory of weak turbulence for the nonlinear Schrödinger equation. Mem. Am. Math. Soc. 238(1124), v+107 (2015)

    MATH  Google Scholar 

  30. Filbet, F., Laurençot, P.: Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput. 25(6), 2004–2028 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications. Wiley, Hoboken (2013)

    MATH  Google Scholar 

  32. Galtier, S., Nazarenko, S.V., Newell, A.C., Pouquet, A.: A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63(5), 447–488 (2000)

    ADS  MATH  Google Scholar 

  33. Gamba, I.M., Smith, L.M., Tran, M.-B.: On the wave turbulence theory for stratified flows in the ocean. M3AS Math. Models Methods Appl. Sci. 01(30)2020

  34. Germain, P., Ionescu, A.D., Tran, M.-B.: Optimal local well-posedness theory for the kinetic wave equation. arXiv preprint arXiv:1711.05587 (2017)

  35. Giri, A.K., Laurençot, P., Warnecke, G.: Weak solutions to the continuous coagulation equation with multiple fragmentation. Nonlinear Anal. Theory Methods Appl. 75(4), 2199–2208 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Hasselmann, K.: On the non-linear energy transfer in a gravity-wave spectrum part 1. general theory. J. Fluid Mech. 12(04), 481–500 (1962)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Hasselmann, K.: On the spectral dissipation of ocean waves due to white capping. Bound.-Layer Meteorol. 6(1–2), 107–127 (1974)

    ADS  Google Scholar 

  38. Jin, S., Tran, M.-B.: Quantum hydrodynamic approximations to the finite temperature trapped bose gases. Phys. D Nonlinear Phenom. 45–57(1), 380–381 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Josserand, C., Pomeau, Y.: Nonlinear aspects of the theory of Bose–Einstein condensates. Nonlinearity 14(5), R25 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Kadomtsev, B.B.: Plasma Turbulence. Academic Press, New York (1965)

    Google Scholar 

  41. Kierkels, A.H.M., Velázquez, J.J.L.: On the transfer of energy towards infinity in the theory of weak turbulence for the nonlinear Schrödinger equation. J. Stat. Phys. 159(3), 668–712 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Kierkels, A.H.M., Velázquez, J.J.L.: On self-similar solutions to a kinetic equation arising in weak turbulence theory for the nonlinear Schrödinger equation. J. Stat. Phys. 163(6), 1350–1393 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Kocharovsky, V.V., Kocharovsky, V.V.: Microscopic theory of phase transitions in a critical region. Phys. Scr. 90(10), 108002 (2015)

    ADS  MATH  Google Scholar 

  44. Korotkevich, A.O., Dyachenko, A.I., Zakharov, V.E.: Numerical simulation of surface waves instability on a homogeneous grid. Phys. D 321(322), 51–66 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Lamb, W.: Existence and uniqueness results for the continuous coagulation and fragmentation equation. Math. Methods Appl. Sci. 27(6), 703–721 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Laurençot, P.: On a class of continuous coagulation–fragmentation equations. J. Differ. Equ. 167(2), 245–274 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Laurençot, P., Mischler, S.: On coalescence equations and related models. In: Degond, P., Pareschi, L., Russo, G. (eds.) Modeling and Computational Methods for Kinetic Equations, pp. 321–356. Springer, Berlin (2004)

    MATH  Google Scholar 

  48. Laurencot, P., Van Roessel, H.: Absence of gelation and self-similar behavior for a coagulation–fragmentation equation. SIAM J. Math. Anal. 47(3), 2355–2374 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Leyvraz, F.: Existence and properties of post-gel solutions for the kinetic equations of coagulation. J. Phys. A Math. Gen. 16(12), 2861 (1983)

    ADS  MathSciNet  Google Scholar 

  50. Leyvraz, F., Tschudi, H.R.: Singularities in the kinetics of coagulation processes. J. Phys. A Math. Gen. 14(12), 3389 (1981)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Lu, X.: The Boltzmann equation for Bose–Einstein particles: velocity concentration and convergence to equilibrium. J. Stat. Phys. 119(5–6), 1027–1067 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Lu, X.: The Boltzmann equation for Bose–Einstein particles: condensation in finite time. J. Stat. Phys. 150(6), 1138–1176 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Lu, X.: The Boltzmann equation for Bose–Einstein particles: regularity and condensation. J. Stat. Phys. 156(3), 493–545 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Lu, X.: Long time strong convergence to Bose–Einstein distribution for low temperature. Kinet. Relat. Models 11(4), 715–734 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Lu, X.: Long time convergence of the Bose–Einstein condensation. J. Stat. Phys. 162(3), 652–670 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  56. Lukkarinen, J., Spohn, H.: Not to normal order? Notes on the kinetic limit for weakly interacting quantum fluids. J. Stat. Phys. 134(5–6), 1133–1172 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Lukkarinen, J., Spohn, H.: Weakly nonlinear Schrödinger equation with random initial data. Invent. Math. 183(1), 79–188 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  58. Lvov, V.S., Lvov, Y., Newell, A.C., Zakharov, V.: Statistical description of acoustic turbulence. Phys. Rev. E 56(1), 390 (1997)

    ADS  MathSciNet  Google Scholar 

  59. Lvov, Y.V., Polzin, K.L., Tabak, E.G., Yokoyama, N.: Oceanic internal-wave field: theory of scale-invariant spectra. J. Phys. Oceanogr. 40(12), 2605–2623 (2010)

    ADS  Google Scholar 

  60. McGrady, E.D., Ziff, Robert M.: “Shattering” transition in fragmentation. Phys. Rev. Lett. 58(9), 892–895 (1987)

    ADS  MathSciNet  Google Scholar 

  61. Melzak, Z.A.: A scalar transport equation. Trans. Am. Math. Soc. 85(2), 547–560 (1957)

    MathSciNet  MATH  Google Scholar 

  62. Menon, G., Pego, R.L.: Dynamical scaling in Smoluchowski’s coagulation equations: uniform convergence. SIAM Rev. 48(4), 745–768 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  63. M’etens, S., Pomeau, Y., Brachet, M.A., Rica, S.: Théorie cinétique d’un gaz de bose dilué avec condensat. C. R. Acad. Sci. Paris S’er. IIb M’ec. Phys. Astr. 327, 791–798 (1999)

    ADS  MATH  Google Scholar 

  64. Micha, R., Tkachev, I.I.: Turbulent thermalization. Phys. Rev. D 70(4), 043538 (2004)

    ADS  Google Scholar 

  65. Nazarenko, S.: Wave Turbulence. Lecture Notes in Physics, vol. 825. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  66. Newell, A.C., Rumpf, B.: Wave turbulence. Annu. Rev. Fluid Mech. 43, 59–78 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  67. Nguyen, T.T., Tran, M.-B.: On the kinetic equation in Zakharov’s wave turbulence theory for capillary waves. SIAM J. Math. Anal. 50(2), 2020–2047 (2018)

    MathSciNet  MATH  Google Scholar 

  68. Nguyen, T.T., Tran, M.-B.: Uniform in time lower bound for solutions to a quantum Boltzmann equation of bosons. Arch. Ration. Mech. Anal. 231(1), 63–89 (2019)

    MathSciNet  MATH  Google Scholar 

  69. Nordheim, L.W.: On the kinetic methods in the new statistics and its applications in the electron theory of conductivity. Proc. R. Soc. Lond. Ser. A 119, 689–698 (1928)

    ADS  MATH  Google Scholar 

  70. Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9, 78–109 (1999)

    MathSciNet  MATH  Google Scholar 

  71. Peierls, R.: Zur kinetischen theorie der warmeleitung in kristallen. Annalen der Physik 395(8), 1055–1101 (1929)

    ADS  MATH  Google Scholar 

  72. Peierls, R.E.: Quantum theory of solids. In: Firez, M., Weisskopf, V.F. (eds.) Theoretical Physics in the Twentieth Century (Pauli Memorial Volume), pp. 140–160. Interscience, New York (1960)

    Google Scholar 

  73. Pomeau, Y., Rica, S.: Thermodynamics of a dilute Bose–Einstein gas with repulsive interactions. J. Phys. A Math. Gen. 33(4), 691 (2000)

    ADS  MATH  Google Scholar 

  74. Pomeau, Y., Tran, M.-B.: Statistical Physics of Non Equilibrium Quantum Phenomena. Lecture Notes in Physics. Springer, Berlin (2019)

    MATH  Google Scholar 

  75. Pushkarev, A.N., Zakharov, V.E.: Turbulence of capillary waves. Phys. Rev. Lett. 76(18), 3320 (1996)

    ADS  Google Scholar 

  76. Pushkarev, A.N., Zakharov, V.E.: Turbulence of capillary waves: theory and numerical simulation. Phys. D Nonlinear Phenom. 135(1), 98–116 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  77. Reichl, L.E., Gust, E.D.: Transport theory for a dilute Bose–Einstein condensate. Phys. Rev. A 88(5), 053603 (2013)

    ADS  Google Scholar 

  78. Reichl, L.E., Tran, M.-B.: A kinetic equation for ultra-low temperature Bose–Einstein condensates. J. Phys. A Math. Theor. 52(6), 063001 (2019)

    ADS  MATH  Google Scholar 

  79. Saha, J., Kumar, J.: The singular coagulation equation with multiple fragmentation. Zeitschrift für angewandte Mathematik und Physik 66(3), 919–941 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  80. Spohn, H.: The phonon Boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J. Stat. Phys. 124(2–4), 1041–1104 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  81. Stewart, I.W., Meister, E.: A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels. Math. Methods Appl. Sci. 11(5), 627–648 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  82. Tran, M.-B., Craciun, G., Smith, L.M., Boldyrev, S.: A reaction network approach to the theory of acoustic wave turbulence. Submitted (2018)

  83. Vigil, R.D., Ziff, R.M.: On the stability of coagulation–fragmentation population balances. J. Colloid Interface Sci. 133(1), 257–264 (1989)

    ADS  Google Scholar 

  84. Von Smoluchowski, M.: Drei vortrage uber diffusion. brownsche bewegung und koagulation von kolloidteilchen. Z. Phys. 17, 557–585 (1916)

    ADS  Google Scholar 

  85. White, W.H.: A global existence theorem for Smoluchowski’s coagulation equations. In: Proceedings of the American Mathematical Society, pp. 273–276 (1980)

    MathSciNet  MATH  Google Scholar 

  86. Zakharov, V.E.: Weak turbulence in media with a decay spectrum. J. Appl. Mech. Tech. Phys. 6(4), 22–24 (1965)

    ADS  Google Scholar 

  87. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9(2), 190–194 (1968)

    ADS  Google Scholar 

  88. Zakharov, V.E.: Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid. Eur. J. Mech.-B/Fluids 18(3), 327–344 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  89. Zakharov, V.E., Filonenko, N.N.: Weak turbulence of capillary waves. J. Appl. Mech. Tech. Phys. 8(5), 37–40 (1967)

    ADS  Google Scholar 

  90. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence I: Wave turbulence. Springer, Berlin (2012)

    MATH  Google Scholar 

  91. Zakharov, V.E., Nazarenko, S.V.: Dynamics of the Bose–Einstein condensation. Phys. D 201(3–4), 203–211 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

A. Soffer is partially supported by NSF grant DMS 1600749 and NSFC 11671163. M.-B. Tran is partially supported by NSF Grant DMS-1814149 and NSF Grant DMS-1854453. The authors would like to thank Prof. A. Newell, Prof. A. Aceves, Prof R. Pego, Prof. B. Rumpf, Prof H. Spohn for fruitful discussions on the topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh-Binh Tran.

Additional information

Communicated by H. Spohn

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soffer, A., Tran, MB. On the Energy Cascade of 3-Wave Kinetic Equations: Beyond Kolmogorov–Zakharov Solutions. Commun. Math. Phys. 376, 2229–2276 (2020). https://doi.org/10.1007/s00220-019-03651-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03651-w

Navigation