Skip to main content
Log in

Inviscid Damping Near the Couette Flow in a Channel

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove asymptotic stability of the Couette flow for the 2D Euler equations in the domain \(\mathbb {T}\times [0,1]\). More precisely we prove that if we start with a small and smooth perturbation (in a suitable Gevrey space) of the Couette flow, then the velocity field converges strongly to a nearby shear flow. Our solutions are defined on the compact set \(\mathbb {T}\times [0,1]\) (“the channel”) and therefore have finite energy. The vorticity perturbation, which is initially assumed to be supported in the interior of the channel, will remain supported in the interior of the channel at all times, will be driven to higher frequencies by the linear flow, and will converge weakly to another shear flow as \(t\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Compared to the system (1.1)–(1.4) there is a slight abuse of notation, in the sense that u is replaced by \((b(y),0)+u(x,y)\) and \(\omega \) is replaced by \(-b'(y)+\omega (x,y)\). The identity \(\psi (x,1)=0\) in (1.6) and (1.8) can be assumed to hold after modifying b by a linear flow \(c_0+c_1y\).

  2. The smallness of \(\Vert \langle \omega \rangle (t)\Vert _{H^{10}}\) is a qualitative condition that is only needed to guarantee that the map \(y\rightarrow v\) is indeed a smooth bijective change of coordinates.

  3. One needs to be slightly careful here, since \(\partial _tb_*\) is not necessarily positive, and the expression in the left-hand side of (7.79) is only positive after adding the second term.

References

  1. Arnold, V., Khesin, B.: Topological Methods in Hydrodynamics. Springer, New York (1998)

    Google Scholar 

  2. Bedrossian, J., Masmoudi, N.: Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations. Publ. Math. Inst. Hautes Etudes Sci. 122, 195–300 (2015)

    Google Scholar 

  3. Bedrossian, J., Coti Zelati, M., Vicol, V.: Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations. arXiv:1711.03668

  4. Bedrossian, J., Germain, P., Masmoudi, N.: On the stability threshold for the 3D Couette flow in Sobolev regularity. Ann. Math. 185, 541–608 (2017)

    Google Scholar 

  5. Bedrossian, J., Germain, P., Masmoudi, N.: Stability of the Couette flow at high Reynolds number in 2D and 3D. arXiv:1712.02855

  6. Bedrossian, J., Masmoudi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the two dimensional Couette flow. Arch. Ration. Mech. Anal. 219, 1087–1159 (2016)

    Google Scholar 

  7. Bedrossian, J., Wang, F., Vicol, V.: The Sobolev stability threshold for 2D shear flows near Couette. arXiv:1604.01831

  8. Coti Zelati, M., Zillinger, C.: On degenerate circular and shear flows: the point vortex and power law circular flows. arXiv:1801.07371

  9. Deng, Y., Masmoudi, N.: Long time instability of the Couette flow in low Gevrey spaces. arXiv:1803.01246

  10. Foias, C., Temam, R.: Gevrey class regularity for the solutions of the Navier–Stokes equations. J. Funct. Anal. 87, 359–369 (1989)

    Google Scholar 

  11. Grenier, E., Nguyen, T., Rousset, F., Soffer, A.: Linear inviscid damping and enhanced viscous dissipation of shear flows by using the conjugate operator method. arXiv:1804.08291

  12. Kiselev, A., Sverak, V.: Small scale creation for solutions of the incompressible two-dimensional Euler equation. Ann. Math. (2) 180, 1205–1220 (2014)

    Google Scholar 

  13. Kukavica, I., Vicol, V.: On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations. Nonlinearity 24, 765–796 (2011)

    Google Scholar 

  14. Kukavica, I., Vicol, V.: On the radius of analyticity of solutions to the three-dimensional Euler equations. Proc. Am. Math. Soc. 137, 669–677 (2009)

    Google Scholar 

  15. Landau, L.: On the vibration of the electronic plasma, J. Phys. USSR 10, 25 (1946). English translation in JETP 16, 574. Reproduced in Collected papers of L.D. Landau, edited and with an introduction by D. ter Haar, Pergamon Press, pp. 445–460 (1965); and in Men of Physics: L. D. Landau, Vol. 2, Pergamon Press, D. ter Haar (ed.) (1965)

  16. Levermore, C., Oliver, M.: Analyticity of solutions for a generalized Euler equation. J. Differ. Equ. 133, 321–339 (1997)

    Google Scholar 

  17. Lin, Z., Zeng, C.: Inviscid dynamical structures near Couette flow. Arch. Ration. Mech. Anal. 200, 1075–1097 (2011)

    Google Scholar 

  18. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29–201 (2011)

    Google Scholar 

  19. Orr, W.: The stability or instability of steady motions of a perfect liquid and of a viscous liquid, part I: a perfect liquid. Proc. R. Ir. Acad. A Math. Phys. Sci. 27, 9–68 (1907)

    Google Scholar 

  20. Sverak, V.: Lecture Notes. http://www-users.math.umn.edu/~sverak/course-notes2011.pdf

  21. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping for a class of monotone shear flow in Sobolev spaces. Commun. Pure Appl. Math. 71, 617–687 (2018)

    Google Scholar 

  22. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and vorticity depletion for shear flows. arXiv:1704.00428

  23. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the Kolmogorov flow. arXiv:1711.01822

  24. Wei, D., Zhang, Z.: Transition threshold for the 3D Couette flow in Sobolev space. arXiv:1803.01359

  25. Yamanaka, T.: A new higher order chain rule and Gevrey class. Ann. Global Anal. Geom. 7, 179–203 (1989)

    Google Scholar 

  26. Yudovich, V.: Non-stationary flows of an ideal incompressible fluid. Z. Vycisl. Mat. i Mat. Fiz. 3, 1032–1066 (1963). (Russian)

    Google Scholar 

  27. Yudovich, V.: Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid. Math. Res. Lett. 2, 27–38 (1995)

    Google Scholar 

  28. Zillinger, C.: Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity. Arch. Ration. Mech. Anal. 221, 1449–1509 (2016)

    Google Scholar 

  29. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369, 8799–8855 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru D. Ionescu.

Additional information

Communicated by C. De Lellis

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported in part by NSF Grant DMS-1600028 and by NSF-FRG Grant DMS-1463753. The second author was supported in part by DMS-1600779 and he is also grateful to IAS where part of the work was carried out.

Appendix A. Gevrey Spaces and Local Wellposedness of Euler Equations

Appendix A. Gevrey Spaces and Local Wellposedness of Euler Equations

In this section we review some general properties of the Gevrey spaces of functions and prove the local well-posedness result in Lemma 3.1.

1.1 A.1 The Gevrey spaces

We start with a characterization of the Gevrey spaces on the physical side.

Lemma A.1

(i) Suppose that \(0<s<1\), \(K>1\), and \(f\in C_0^{\infty }({\mathbb {R}}^d)\) satisfies the bounds

$$\begin{aligned} \big |D^{\alpha }f(x)\big |\le K^{m}(m+1)^{m/s}, \end{aligned}$$
(A.1)

for all integers \(m\ge 0\) and multi-indeces \(\alpha \) with \(|\alpha |=m\). Assume that \((\mathrm{supp}\,f)\subseteq [-L,\,L]^d\), \(L\ge 1\). Then

$$\begin{aligned} \big |{\widehat{f}}(\xi )\big |\lesssim _{K,s} L^de^{-\mu |\xi |^s}, \end{aligned}$$
(A.2)

for all \(\xi \in {\mathbb {R}}^d\) and some \(\mu =\mu (K,s)>0\).

Similarly, if \(f\in C^{\infty }({\mathbb {T}}\times {\mathbb {R}})\) with \(\mathrm{supp}\,f\subseteq {\mathbb {T}}\times [0,1]\) satisfies (A.1), then

$$\begin{aligned} \big |{\widetilde{f}}(k,\xi )\big |\lesssim _{K,s} Le^{-\mu |k,\xi |^s}, \end{aligned}$$
(A.3)

for all \(k\in {\mathbb {Z}}, \xi \in {\mathbb {R}}\) and some \(\mu =\mu (K,s)>0\).

(ii) Conversely, assume that, for some \(\mu >0\) and \(s\in (0,1)\),

$$\begin{aligned} \big |{\widehat{f}}(\xi )\big |\le e^{-\mu |\xi |^s}, \end{aligned}$$
(A.4)

for all \(\xi \in {\mathbb {R}}^d\). Then there is \(K>1\) depending on s and \(\mu \) such that

$$\begin{aligned} \left| D^{\alpha }f(x)\right| \lesssim _{\mu ,s} K^m(m+1)^{m/s}, \end{aligned}$$
(A.5)

for all multi-indices \(\alpha \) with \(|\alpha |=m\).

Similarly, if \(f\in C^{\infty }({\mathbb {T}}\times {\mathbb {R}})\) satisfies, for some \(\mu >0,s\in (0,1)\),

$$\begin{aligned} \big |{\widetilde{f}}(k,\xi )\big |\le e^{-\mu |k,\xi |^s}, \end{aligned}$$
(A.6)

for all \(k\in {\mathbb {Z}}, \xi \in {\mathbb {R}}\), then the bounds (A.5) hold for some \(K=K(\mu ,s)>0\) and all \(x\in {\mathbb {T}}\times {\mathbb {R}}\).

Proof

(i) We prove only the harder estimates (A.2). We may assume that \(|\xi |\) is large. Using the definition of the Fourier transform, integration by parts, and the bounds (A.1), we see that

$$\begin{aligned} \big |{\widehat{f}}(\xi )\big |\le \frac{C^N}{|\xi |^N}K^N(N+1)^{N/s}L^d. \end{aligned}$$
(A.7)

This holds for all integers \(N\ge 1\). Choose N to be the largest integer so that \(CK(N+1)^{1/s}\le |\xi |/e\), thus

$$\begin{aligned} N=\frac{|\xi |^s}{(CKe)^s}+O(1). \end{aligned}$$

Consequently, using (A.7) we get that

$$\begin{aligned} \big |{\widehat{f}}(\xi )\big |\lesssim _s L^de^{-N}\lesssim _{K,\mu }L^de^{-\mu |\xi |^s}, \end{aligned}$$

for suitable \(\mu >0\).

(ii) We consider only the case when \(f\in C^\infty ({\mathbb {R}}^d)\). Using (A.4) we have

$$\begin{aligned} \Vert D^\alpha f\Vert _{L^\infty }\le C_0^m\Vert \langle \xi \rangle ^m{\widehat{f}}(\xi )\Vert _{L^1}\le C_1^m\big (1+\sup _{|\xi |\ge 2}(|\xi |^{m+d+1}e^{-\mu |\xi |^s})\big ). \end{aligned}$$
(A.8)

We notice that the function \(r\rightarrow r^Ne^{-r}\), \(r>0\), \(N\ge 1\), has a maximum at \(r=N\). Thus

$$\begin{aligned} r^Ne^{-r}\le (N/e)^N \qquad \text { for any }r>0\text { and }N\ge 1, \end{aligned}$$
(A.9)

so the right-hand side of (A.8) is bounded by

$$\begin{aligned} C_1^m\big [1+\sup _{r>0}(r/\mu )^{(1/s)\cdot (m+d+1)}e^{-r}\big ]\le K_1^m(N/e)^N, \end{aligned}$$

where \(N=(m+d+1)/s\) and \(K_1\) is sufficiently large. The desired bounds (A.5) follow.

\(\square \)

1.1.1 A.1.1 Gevrey cutoff functions.

Using Lemma A.1, one can construct explicit cutoff functions in Gevrey spaces. For \(a>0\) let

$$\begin{aligned} \psi _a(x):={\left\{ \begin{array}{ll} e^{-[1/x^a+1/(1-x)^a]}&{}\quad \text { if }x\in [0,1],\\ 0&{}\quad \text { if }x\notin [0,1]. \end{array}\right. } \end{aligned}$$
(A.10)

Clearly \(\psi _a\) are smooth functions on \({\mathbb {R}}\), supported in the interval [0, 1]. Using (A.9) it is easy to verify that \(\psi _a\) satisfies the bounds (A.1) for \(s:=a/(a+1)\). Thus, for some \(\mu =\mu (a)>0\),

$$\begin{aligned} |\widehat{\psi _a}(\xi )|\lesssim e^{-\mu |\xi |^{a/(a+1)}}. \end{aligned}$$
(A.11)

One can also construct compactly supported Gevrey cutoff functions which are equal to 1 in a given interval. Indeed, for any \(\rho \in [9/10,1)\), the function

$$\begin{aligned} \psi '_{a,\rho }(x):=\frac{\psi _a(x)}{\psi _a(x)+\psi _a(x-\rho )+\psi _a(x+\rho )} \end{aligned}$$
(A.12)

is smooth, non-negative, supported in [0, 1], and equal to 1 in \([1-\rho ,\rho ]\). Moreover, it follows from Lemma A.1(i) that \(|\widehat{\psi '_{a,\rho }}(\xi )|\lesssim e^{-\mu |\xi |^{a/(a+1)}}\) for some \(\mu =\mu (a,\rho )>0\).

1.1.2 A.1.2. Compositions of Gevrey functions.

The physical space characterization of Gevrey functions is useful when studying compositions. In our setting, we have the following lemma:

Lemma A.2

(i) Assume \(\kappa _1>0\), \(s\in (0,1)\), and \(f\in {\mathcal {G}}^{\kappa _1,s}({\mathbb {T}}\times {\mathbb {R}})\). Suppose \(M\in (0,\infty )\) and \(g:{\mathbb {T}}\times {\mathbb {R}}\rightarrow {\mathbb {T}}\times {\mathbb {R}}\) satisfies, for any \(m\ge 1\),

$$\begin{aligned} |D^\alpha g(x,y)|\le M^m(m+1)^{m/s}\qquad \text { for any }(x,t)\in \mathbb {T}\times {\mathbb {R}}\text { and }|\alpha |\in [1,m].\nonumber \\ \end{aligned}$$
(A.13)

Suppose that f and \(f\circ g\) are supported in \({\mathbb {T}}\times [-2,2]\). Then, for a suitable \(\kappa _2>0\) depending on \(s,\kappa _1,M\), we have \(f\circ g\in {\mathcal {G}}^{\kappa _2,s}\) and

$$\begin{aligned} \left\| f\circ g\right\| _{ {\mathcal {G}}^{\kappa _2,s}}\lesssim _{s,\kappa _1,M} \left\| f\right\| _{ {\mathcal {G}}^{\kappa _1,s}}. \end{aligned}$$
(A.14)

(ii) Assume \(s\in (0,1)\), \(L\in (0,\infty )\), \(I,J\subseteq {\mathbb {R}}\) are open intervals, and \(g:I\rightarrow J\) is a smooth bijective map satisfying, for any \(m\ge 1\),

$$\begin{aligned} |D^\alpha g(x)|\le L^m(m+1)^{m/s}\qquad \text { for any }x\in I\text { and }|\alpha |\in [1,m]. \end{aligned}$$
(A.15)

If \(|g'(x)|\ge 1/10\) for any \(x\in I\) then the inverse function \(g^{-1}:J\rightarrow I\) satisfies the bounds

$$\begin{aligned} |D^\alpha (g^{-1})(x)|\le M^m(m+1)^{m/s}\qquad \text { for any }x\in J\text { and }|\alpha |\in [1,m], \end{aligned}$$
(A.16)

for some constant \(M=M(L,s)\ge L\).

This can be proved using Lemma A.1, and we omit the details. See also Theorem 6.1 and Theorem 3.2 of [25] for more general estimates on compositions of functions in Gevrey spaces.

1.2 A.2. Proof of Lemma 3.1

As we remarked earlier, the lemma can be obtained as a consequence of the more general theory developed in [10, 13, 14, 16]. For the sake of convenience, we provide a complete proof here in our special case, using the Fourier transform.

To prove Gevrey bounds, we have to work with suitable weights. First we define the functions \(g:(0,\infty )\rightarrow (0,\infty )\), by

$$\begin{aligned} \begin{aligned} g'(r):= {\left\{ \begin{array}{ll} s\, r^{s-1}-s\rho ^{s-1}&{}\quad \text { if }r\in (0,\rho ],\\ 0&{}\quad \text { if }r\ge \rho , \end{array}\right. } \qquad g(r):=\int _0^r g'(x)\,dx. \end{aligned} \end{aligned}$$
(A.17)

Here \(\rho \ge \rho _0\) is a large parameter (which is needed only to guarantee convergence and continuity in time of the energy functionals below), and the desired Gevrey bounds follow by proving estimates independent of \(\rho \) and letting \(\rho \rightarrow \infty \).

Then we define the main weights \(B:[0,T]\times {\mathbb {R}}^2\rightarrow (0,\infty )\),

$$\begin{aligned} B(t,v):=\langle v\rangle ^3\exp [\lambda (t)g(\langle v\rangle )], \end{aligned}$$
(A.18)

where \(\lambda (t):[0,T]\rightarrow (0,\infty )\), \(\lambda (0)=\lambda _0\), is a positive decreasing function to be chosen below.

With \(v=(k,\xi )\), we define the energy functionals

$$\begin{aligned} {\mathcal {E}}(t):=\sum _{k\in {\mathbb {Z}}}\int _{{\mathbb {R}}}B^2(t,k,\xi )\big |{\widetilde{\omega }}(t,k,\xi )\big |^2\,d\xi . \end{aligned}$$
(A.19)

Since \(\omega \in C([0,T]:H^{10})\) and \(B(t,v)\lesssim _\rho \langle v\rangle ^{3}\), the function \({\mathcal {E}}\) is well-defined and continuous on [0, T]. Moreover, \({\mathcal {E}}(0)\le \Vert \langle \nabla \rangle ^3\omega _0\Vert _{{\mathcal {G}}^{\lambda _0,s}}\).

Step 1. We fix a smooth function \(\Psi (y)\) with

$$\begin{aligned} {\mathrm {supp}}\,\Psi \subseteq [\vartheta /8,1-\vartheta /8],\qquad \Psi |_{[\vartheta /4,1-\vartheta /4]}\equiv 1,\qquad |{\widetilde{\Psi }}(\xi )|\lesssim e^{-\langle \xi \rangle ^{7/8}}\text { for all }\xi \in {\mathbb {R}},\nonumber \\ \end{aligned}$$
(A.20)

where, in the rest of this section, all implicit constants are allowed to depend on \(\vartheta \). By the support property of \(\omega (t)\) and the Euler equation, we calculate

$$\begin{aligned} \begin{aligned} \frac{d}{dt}{\mathcal {E}}(t)&=\sum _{k\in {\mathbb {Z}}}\int _{{\mathbb {R}}}2B(t,k,\xi ){\dot{B}}(t,k,\xi )\big |{\widetilde{\omega }}(t,k,\xi )\big |^2\,d\xi \\&\quad +2\mathfrak {R}\,\sum _{k\in {\mathbb {Z}}}\int _{{\mathbb {R}}}B^2(t,k,\xi )\,\overline{{\widetilde{\omega }}(t,k,\xi )}\,\widetilde{\partial _t\omega }(t,k,\xi )\,d\xi \\&=\sum _{k\in {\mathbb {Z}}}\int _{{\mathbb {R}}}2B(t,k,\xi ){\dot{B}}(t,k,\xi )\big |{\widetilde{\omega }}(t,k,\xi )\big |^2\,d\xi +{\mathcal {P}}^1(t)+{\mathcal {P}}^2(t), \end{aligned} \end{aligned}$$
(A.21)

where, using the equations and inserting a factor of \(\Psi (y)\),

$$\begin{aligned} \begin{aligned} {\mathcal {P}}^1(t)&:=C\mathfrak {R}\sum _{k\in \mathbb {Z}}\int _{{\mathbb {R}}^2}B^2(t,k,\xi )\,\overline{{\widetilde{\omega }}(t,k,\xi )}\cdot {\widetilde{(y\Psi )}(\xi -\eta )\,ik\,{\widetilde{\omega }}(t,k,\eta )}\,d\xi \,d\eta ,\\&=C\mathfrak {R}\sum _{k\in \mathbb {Z}}\int _{{\mathbb {R}}^2}ik[B^2(t,k,\xi )-B^2(t,k,\eta )]\,\overline{{\widetilde{\omega }}(t,k,\xi )}\\&\quad {\widetilde{\omega }}(t,k,\eta )\widetilde{(y\Psi )}(\xi -\eta )\,d\xi \,d\eta , \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} {\mathcal {P}}^2&(t):=C\mathfrak {R}\sum _{k,\ell \in \mathbb {Z}}\int _{{\mathbb {R}}^2}B^2(t,k,\xi )\,\overline{{\widetilde{\omega }}(t,k,\xi )}\,\Big \{-\widetilde{\partial _y(\Psi \psi )}(t,k-\ell ,\xi -\eta )\,i\ell \,{\widetilde{\omega }}(t,\ell ,\eta )\\&\qquad \qquad +\widetilde{\partial _x(\Psi \psi )}(t,k-\ell ,\xi -\eta )\,i\eta \,{\widetilde{\omega }}(t,\ell ,\eta )\Big \}\,d\xi d\eta \\&=C\mathfrak {R}\sum _{k,\ell \in \mathbb {Z}}\int _{{\mathbb {R}}^2}i[\ell B^2(t,k,\xi )-kB^2(t,\ell ,\eta )]\,\overline{{\widetilde{\omega }}(t,k,\xi )}\\&\quad {\widetilde{\omega }}(t,\ell ,\eta )\widetilde{\partial _y(\Psi \psi )}(t,k-\ell ,\xi -\eta )\,d\xi d\eta \\&+C\mathfrak {R}\sum _{k,\ell \in \mathbb {Z}}\int _{{\mathbb {R}}^2}i[\eta B^2(t,k,\xi )-\xi B^2(t,\ell ,\eta )]\,\overline{{\widetilde{\omega }}(t,k,\xi )}\\&\quad {\widetilde{\omega }}(t,\ell ,\eta )\widetilde{\partial _x(\Psi \psi )}(t,k-\ell ,\xi -\eta )\,d\xi d\eta . \end{aligned} \end{aligned}$$

Step 2. We estimate now \(|{\mathcal {P}}^1(t)|\) and \(|{\mathcal {P}}^2(t)|\). Using the bounds in Lemma A.3, we see that

$$\begin{aligned} |\ell B^2(t,k,\xi )-&kB^2(t,\ell ,\eta )|+|\eta B^2(t,k,\xi )-\xi B^2(t,\ell ,\eta )|\lesssim B(t,k,\xi )B(t,\ell ,\eta )\nonumber \\&\times B(t,k-\ell ,\xi -\eta )(\min )^{-3}[1+\lambda (t)g(\langle k,\xi \rangle )]\langle k-\ell ,\xi -\eta \rangle , \end{aligned}$$
(A.22)

where \(\min :=\min \{\langle k,\xi \rangle ,\langle \ell ,\eta \rangle ,\langle k-\ell ,\xi -\eta \rangle \}\). Indeed, if \(|k-\ell ,\xi -\eta |\ge (|k,\xi |+|\ell ,\eta |)/20\) then the bounds follow directly from (A.35), by estimating each term in the left-hand side independently. On the other hand, if \(|k-\ell ,\xi -\eta |\le (|k,\xi |+|\ell ,\eta |)/20\) then we use (A.36), which forces us to include the term \(\lambda (t)g(\langle k,\xi \rangle )\) in the right-hand side of (A.22).

Let

$$\begin{aligned} \begin{aligned} H(t,k,\xi )&:=\langle k,\xi \rangle ^2|\widetilde{\Psi \psi }(t,k,\xi )|+|{\widetilde{\omega }}(t,k,\xi )|,\\ H'(\xi )&:=\langle \xi \rangle |\widetilde{y\Psi }(t,k,\xi )|. \end{aligned} \end{aligned}$$
(A.23)

It follows from (A.22), changes of variables, and the identities above that

$$\begin{aligned} |{\mathcal {P}}^1(t)|&\lesssim \sum _{k\in \mathbb {Z}}\int _{{\mathbb {R}}^2}|{\widetilde{\omega }}(t,k,\xi )||{\widetilde{\omega }}(t,k,\eta )||H'(\xi -\eta )|\cdot B(t,k,\xi )B(t,k,\eta )\nonumber \\&\quad \times B(t,0,\xi -\eta )[1+\lambda (t)g(\langle k,\xi \rangle )]\,d\xi d\eta , \end{aligned}$$
(A.24)
$$\begin{aligned} |{\mathcal {P}}^2(t)|&\lesssim \sum _{k,\ell \in \mathbb {Z}}\int _{{\mathbb {R}}^2}|H(t,k,\xi )||H(t,\ell ,\eta )||H(t,k-\ell ,\xi -\eta )|\nonumber \\&\quad \times B(t,k,\xi )B(t,\ell ,\eta )B(t,k-\ell ,\xi -\eta ){\mathbf {1}}_{{\mathcal {R}}}((k,\xi ),(\ell ,\eta ))\nonumber \\&\quad \times \langle k-\ell ,\xi -\eta \rangle ^{-3}[1+\lambda (t)g(\langle k,\xi \rangle )]\,d\xi d\eta , \end{aligned}$$
(A.25)

where \({\mathcal {R}}:=\big \{\langle k-\ell ,\xi -\eta \rangle \le \min \{\langle k,\xi \rangle ,\langle \ell ,\eta \rangle \}\big \}\).

To estimate \(|{\mathcal {P}}^1(t)|\) and \(|{\mathcal {P}}^2(t)|\) we use the following elementary bounds (compare with Lemma 8.1): for any functions \(F_1,F_2,F_3:\mathbb {Z}\times {\mathbb {R}}\rightarrow [0,\infty )\) we have

$$\begin{aligned} \sum _{k,\ell \in \mathbb {Z}}\int _{{\mathbb {R}}^2}F_1(k,\xi )F_2(\ell ,\eta )F_3(k-\ell ,\xi -\eta )\,d\xi d\eta \lesssim \Vert F_1\Vert _{L^2}\Vert F_2\Vert _{L^2}\Vert F_3\Vert _{L^1}.\nonumber \\ \end{aligned}$$
(A.26)

For \(t\in [0,T]\) let

$$\begin{aligned} Y(t):=\big \Vert B(t,k,\xi )\,{\widetilde{\omega }}(t,k,\xi )\big \Vert _{L^2_{k,\xi }},\qquad Y'(t):=\big \Vert \sqrt{g(\langle k,\xi \rangle )}B(t,k,\xi )\,{\widetilde{\omega }}(t,k,\xi )\big \Vert _{L^2_{k,\xi }}.\nonumber \\ \end{aligned}$$
(A.27)

Using Lemma A.4, we have

$$\begin{aligned} \big \Vert W(t,k,\xi )H(t,k,\xi )\big \Vert _{L^2_{k,\xi }}\lesssim \big \Vert W(t,k,\xi )\,{\widetilde{\omega }}(t,k,\xi )\big \Vert _{L^2_{k,\xi }}, \end{aligned}$$
(A.28)

provided that \(W(t,k,\xi )=B(t,k,\xi )\) or \(W(t,k,\xi )=\sqrt{g(\langle k,\xi \rangle )}B(t,k,\xi )\).

Using (A.24), (A.20), and (A.26), we have, for any \(t\in [0,T]\),

$$\begin{aligned} |{\mathcal {P}}^1(t)|\lesssim (Y(t))^2+\lambda (t)(Y'(t))^2 \end{aligned}$$
(A.29)

To estimate \({\mathcal {P}}^2\), we first observe that \(B(t,v)\le \langle v\rangle ^3+\lambda (t)g(\langle v\rangle )B(t,v)\) with \(v=(k,\xi )\). As a consequence, we have

$$\begin{aligned} B(t,v) [1+\lambda (t)g(\langle v\rangle )]\lesssim \langle v\rangle ^3+\lambda (t)g(\langle v\rangle )B(t,v). \end{aligned}$$
(A.30)

Using (A.25)–(A.28) and (A.30), we estimate

$$\begin{aligned} |{\mathcal {P}}^2(t)|\lesssim \lambda (t)Y(t)(Y'(t))^2+\Vert \omega (t)\Vert _{H^6}(Y(t))^2. \end{aligned}$$
(A.31)

Step 3. We reexamine now the identities (A.21). Notice that

$$\begin{aligned} {\dot{B}}(t,k,\xi )=\lambda '(t)g(\langle k,\xi \rangle )B(t,k,\xi ). \end{aligned}$$

We use (A.29)–(A.31) to estimate

$$\begin{aligned} \begin{aligned} \frac{d}{dt}{\mathcal {E}}(t)&\le \lambda '(t)(Y'(t))^2+{\mathcal {P}}^1(t)+{\mathcal {P}}^2(t)\\&\le \lambda '(t)(Y'(t))^2+C_\vartheta \big \{(Y(t))^2+\lambda (t)(Y'(t))^2\\&\quad +\lambda (t)Y(t)(Y'(t))^2+\Vert \omega (t)\Vert _{H^6}(Y(t))^2\big \}. \end{aligned} \end{aligned}$$

Now suppose \(\lambda (t)\) satisfies

$$\begin{aligned} \lambda '(t)+C_\vartheta (Y(t)+1)\lambda (t)\le 0, \end{aligned}$$
(A.32)

then we would obtain

$$\begin{aligned} \frac{d}{dt}{\mathcal {E}}(t)\le C_{\vartheta }(1+\Vert \omega (t)\Vert _{H^6}){\mathcal {E}}(t), \end{aligned}$$

which gives

$$\begin{aligned} {\mathcal {E}}(t)\le {\mathcal {E}}(0)\exp {\left[ C_{\vartheta }\int _0^t(1+\Vert \omega (s)\Vert _{H^6})ds\right] }. \end{aligned}$$
(A.33)

From (A.33), we see that we can guarantee (A.32) if \(\lambda (t)\) is chosen so that

$$\begin{aligned} \lambda '(t)+4C_{\vartheta }\lambda (t)+4C_{\vartheta }Y(0)\exp {\left[ C_{\vartheta }\int _0^t(1+\Vert \omega (s)\Vert _{H^6})ds\right] }\lambda (t)\le 0. \end{aligned}$$
(A.34)

The desired bounds (3.3) and (3.4) follow easily from (A.33), (A.34), by sending \(\rho \rightarrow \infty \).

We prove now suitable bounds on the weights B which are used for (A.22).

Lemma A.3

For \(v,w\in \mathbb {Z}\times {\mathbb {R}}\) we have

$$\begin{aligned} B(t,v+w)\lesssim B(t,v)B(t,w)\min (\langle v\rangle ,\langle w\rangle )^{-3}. \end{aligned}$$
(A.35)

Moreover, if \(|v|\le |w|\) and \(|w-v|\le |v|/4\), then

$$\begin{aligned} \big |B(t,w)-B(t,v)\big |&\lesssim [1+\lambda (t) g(\langle v\rangle )]\langle v\rangle ^{-1}B(t,v)\cdot B(t,v-w)\langle v-w\rangle ^{-2}.\nonumber \\ \end{aligned}$$
(A.36)

Proof

For \(\lambda \in [0,1]\), \(s\in [1/4,3/4]\), \(\rho \ge 2^{40}\), and g as in (A.17), we define the functions \(f_\lambda :(0,\infty )\rightarrow (0,\infty )\) as

$$\begin{aligned} f_\lambda (r):=\exp [\lambda g(r)]. \end{aligned}$$
(A.37)

Step 1. We show first that for \(x,y\ge 1\) we have

$$\begin{aligned} \frac{f_\lambda (x+y)}{f_\lambda (x)f_\lambda (y)}\le 1. \end{aligned}$$
(A.38)

Indeed, we may assume \(x\le y\) and calculate

$$\begin{aligned} \frac{f_\lambda (x+y)}{f_\lambda (x)f_\lambda (y)}= & {} \exp [\lambda (g(x+y)-g(x)-g(y))]\\= & {} \exp \Big [-\lambda \int _0^xg'(r)\,dr+\lambda \int _y^{y+x}g'(r)\,dr\Big ]. \end{aligned}$$

The bounds (A.38) follow since \(g':(0,\infty )\rightarrow (0,\infty )\) is a continuous and decreasing function.

Step 2. We show now that if \(y\ge 1\) and \(x\in [0,y]\) then

$$\begin{aligned} |f_\lambda (y+x)-f_\lambda (y)|\le f_\lambda (x)f_\lambda (y)\lambda g(y)(x/y). \end{aligned}$$
(A.39)

Indeed, using the monotonicity of \(g'\) we write

$$\begin{aligned} |f_\lambda (y+x)-f_\lambda (y)|=\int _y^{x+y}f_\lambda (r)\lambda g'(r)\,dr\le \lambda \int _0^{x}f_\lambda (y+r)g'(y)\,dr. \end{aligned}$$
(A.40)

Using now (A.38) we estimate the right-hand side of (A.40) by

$$\begin{aligned} \begin{aligned} \lambda g'(y)\int _0^{x}f_\lambda (y+r)\,dr\le \lambda g'(y)xf_\lambda (y+x)\le f_\lambda (x)f_\lambda (y)\lambda g'(y)x. \end{aligned} \end{aligned}$$

Since \(yg'(y)\le g(y)\), this completes the proof of (A.39).

Step 3. Recall that \(B(t,v)=\langle v\rangle ^3f_{\lambda (t)}(\langle v\rangle )\). The bounds (A.35) follow from (A.38) and the monotonicity of the functions \(f_\lambda \). The bounds (A.36) follow from (A.39) and monotonicity. This completes the proof of the lemma. \(\quad \square \)

Finally, we prove weighted elliptic estimates for the functions \(\Psi \,\psi \).

Lemma A.4

If \(W(k,\xi ):=e^{\lambda g(\langle k,\xi \rangle )}\langle k,\xi \rangle ^dg(\langle k,\xi \rangle )^p\), \(\lambda ,p\in [0,2]\), \(d\in [0,6]\), and \(t\in [0,T]\), then

$$\begin{aligned} \big \Vert \langle k,\xi \rangle ^2 W(k,\xi )\widetilde{\big (\Psi \,\psi \big )}(t,k,\xi )\big \Vert _{L^2_{k,\xi }}\lesssim \big \Vert W(k,\xi )\,{\widetilde{\omega }}(t,k,\xi )\big \Vert _{L^2_{k,\xi }}, \end{aligned}$$
(A.41)

uniformly in \(\lambda ,p,d\), and \(\rho \) (the parameter in the definition of the function g).

Proof

We only need to use the equation \(\Delta \psi =\omega \), \(\psi (x,0)=\psi (x,1)=0\), see (1.6). For simplicity of notation, we also drop the parameter t.

Step 1. As in Sect. 5.2.1, we take the partial Fourier transform along \(\mathbb {T}\), thus

$$\begin{aligned} \partial _y^2\psi ^*(k,y)-k^2\psi ^*(k,y)=\omega ^*(k,y),\qquad y\in [0,1],\,k\in \mathbb {Z}. \end{aligned}$$
(A.42)

In particular, since \(\omega ^*(k,y)=0\) if \(y\in [0,\vartheta /2]\) or \(y\in [1-\vartheta /2,1]\), we have

$$\begin{aligned} \begin{aligned} \psi ^*(k,y)= {\left\{ \begin{array}{ll} b_k^0\sinh (ky)/k&{}\qquad \text { if }k\ne 0\text { and }y\in [0,\vartheta /2],\\ b_k^1\sinh (k(y-1))/k&{}\qquad \text { if }k\ne 0\text { and }y\in [1-\vartheta /2,1],\\ b_k^0y&{}\qquad \text { if }k=0\text { and }y\in [0,\vartheta /2],\\ b_k^1(y-1)&{}\qquad \text { if }k=0\text { and }y\in [1-\vartheta /2,1], \end{array}\right. } \end{aligned} \end{aligned}$$
(A.43)

where \(b_k^0:=(\partial _y\psi ^*)(k,0)\) and \(b_k^1:=(\partial _y\psi ^*)(k,1)\).

We calculate the coefficients \(b_k^0\) and \(b_k^1\) using Green functions, as in Sect. 5.2.1. Indeed, it follows from (A.42) that

$$\begin{aligned} \psi ^*(k,y)=-\int _0^1\omega ^*(k,z)G_k(y,z)\,dz, \end{aligned}$$
(A.44)

where

$$\begin{aligned} G_k(y,z)=\frac{1}{k\sinh k} {\left\{ \begin{array}{ll} \sinh (k(1-z))\sinh (ky)&{}\qquad \text { if }y\le z,\\ \sinh (kz)\sinh (k(1-y))&{}\qquad \text { if }y\ge z, \end{array}\right. } \end{aligned}$$
(A.45)

if \(k\ne 0\), and

$$\begin{aligned} G_0(y,z)= {\left\{ \begin{array}{ll} (1-z)y&{}\qquad \text { if }y\le z,\\ z(1-y)&{}\qquad \text { if }y\ge z. \end{array}\right. } \end{aligned}$$
(A.46)

In particular, for \(\iota \in \{0,1\}\),

$$\begin{aligned} b_k^\iota =-\int _0^1\omega ^*(k,z)G_k^\iota (z)\,dz, \end{aligned}$$
(A.47)

where

$$\begin{aligned} \begin{aligned}&G_k^0(z)=\frac{\sinh (k(1-z))}{\sinh k}\,\,\text { if }\,\,k\ne 0,\qquad G_0^0(t)=1-z,\\&G_k^1(z)=\frac{-\sinh (k z)}{\sinh k}\,\,\text { if }\,\,k\ne 0,\quad \qquad \,\,\,\, G_0^1(t)=-z. \end{aligned} \end{aligned}$$
(A.48)

Step 2. We return now to the proof of (A.41). We start from the equation

$$\begin{aligned} \Delta (\Psi \psi )(x,y)=\Psi (y)\omega (x,y)+2\Psi '(y)\partial _y\psi (x,y)+\Psi ''(y)\psi (x,y). \end{aligned}$$
(A.49)

As in Lemma 5.3, see (5.34), using (A.47) and the support restriction on \(\omega \), it follows that

$$\begin{aligned} |b_k^0|^2+|b_k^1|^2\lesssim \int _{{\mathbb {R}}}|{\widetilde{\omega }}(k,\xi )|^2e^{-|k|\vartheta /3}e^{-|\xi |^{7/8}}\,d\xi , \end{aligned}$$
(A.50)

for any \(k\in {\mathbb {Z}}\). Let \(\phi (x,y):=2\Psi '(y)\partial _y\psi (x,y)+\Psi ''(y)\psi (x,y)\) denote the last two terms in (A.49). It follows from (A.43) and (A.50) that

$$\begin{aligned} |{\widetilde{\phi }}(k,\xi )|\lesssim \Vert {\widetilde{\omega }}\Vert _{L^2_{k,\xi }}e^{-\vartheta |k|/20}e^{-|\xi |^{5/6}}, \end{aligned}$$

compare with (5.41). Moreover, since the decay of \({\widetilde{\Psi }}\) is faster than the variation of the weights W (compare with the definitions (A.18)), we have

$$\begin{aligned} \big \Vert W(k,\xi )\widetilde{\big (\Psi \,\omega \big )}(k,\xi )\big \Vert _{L^2_{k,\xi }}\lesssim \big \Vert W(k,\xi )\,{\widetilde{\omega }}(k,\xi )\big \Vert _{L^2_{k,\xi }}. \end{aligned}$$

The last two inequalities and the identity (A.49) show that

$$\begin{aligned} \big \Vert (k^2+\xi ^2) W(k,\xi )\widetilde{\big (\Psi \,\psi \big )}(k,\xi )\big \Vert _{L^2_{k,\xi }}\lesssim \big \Vert W(k,\xi )\,{\widetilde{\omega }}(k,\xi )\big \Vert _{L^2_{k,\xi }}. \end{aligned}$$
(A.51)

Finally, in the case \(k=0\) we can use the formulas for \(\psi ^*(0,y)\) in (A.43) and the bounds (A.50). It follows that \(|\widetilde{\Psi \psi }(0,\xi )|\lesssim \Vert {\widetilde{\omega }}\Vert _{L^2_{k,\xi }}e^{-|\xi |^{5/6}}\). The desired conclusion (A.41) follows. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ionescu, A.D., Jia, H. Inviscid Damping Near the Couette Flow in a Channel. Commun. Math. Phys. 374, 2015–2096 (2020). https://doi.org/10.1007/s00220-019-03550-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03550-0

Navigation