Skip to main content
Log in

Relative Commutant Pictures of Roe Algebras

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let X be a proper metric space, which has finite asymptotic dimension in the sense of Gromov (or more generally, straight finite decomposition complexity of Dranishnikov and Zarichnyi). New descriptions are provided of the Roe algebra of X: (i) it consists exactly of operators which essentially commute with diagonal operators coming from Higson functions (that is, functions on X whose oscillation tends to 0 at \({\infty}\)), and (ii) it consists exactly of quasi-local operators, that is, ones which have finite \({\epsilon}\)-propogation (in the sense of Roe) for every \({\epsilon > 0}\). These descriptions hold both for the usual Roe algebra and for the uniform Roe algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell G., Dranishnikov A.: Asymptotic dimension. Topol. Appl. 155(12), 1265–1296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dranishnikov A.N.: Asymptotic topology. Uspekhi Mat. Nauk 55(6(336)), 71–116 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dranishnikov A.: On Gromov’s positive scalar curvature conjecture for duality groups. J. Topol. Anal. 6(3), 397–419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dranishnikov A., Zarichnyi M.: Asymptotic dimension, decomposition complexity, and Haver’s property C. Topol. Appl. 169, 99–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Engel, A.: Index theory of uniform pseudodifferential operators. arXiv:1502.00494v1

  6. Engel, A.: Rough index theory on spaces of polynomial growth and contractibility. arXiv:1505.03988v3

  7. Georgescu V.: On the structure of the essential spectrum of elliptic operators on metric spaces. J. Funct. Anal. 260(6), 1734–1765 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Georgescu, V.: On the essential spectrum of the operators in certain crossed products. arXiv:1705.00379 (2017)

  9. Georgescu V., Iftimovici A.: Localizations at infinity and essential spectrum of quantum Hamiltonians. I. General theory. Rev. Math. Phys. 18(4), 417–483 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gromov, M.: Asymptotic invariants of infinite groups. In: Geometric Group Theory (Sussex, 1991), Volume 182 of London Mathematical Society Lecture Note Series, vol. 2, pp 1–295. Cambridge University Press, Cambridge (1993)

  11. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

  12. Guentner E., Kaminker J.: Exactness and the Novikov conjecture. Topology 41(2), 411–418 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guentner E., Tessera R., Yu G.: A notion of geometric complexity and its application to topological rigidity. Invent. Math. 189(2), 315–357 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Guentner E., Tessera R., Yu G.: Discrete groups with finite decomposition complexity. Groups Geom. Dyn. 7(2), 377–402 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kasparov G., Yu G.: The coarse geometric Novikov conjecture and uniform convexity. Adv. Math. 206(1), 1–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirchberg E., Winter W.: Covering dimension and quasidiagonality. Int. J. Math. 15(1), 63–85 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lange, B.V., Rabinovich, V.S.: Noethericity of multidimensional discrete convolution operators. Mat. Zametki 37(3), 407–421, 462 (1985)

  18. Ozawa N.: Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris Sér. I Math. 330(8), 691–695 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Rabinovich, V.S., Roch, S., Silbermann, B.: Fredholm theory and finite section method for band-dominated operators. Integral Equ. Oper. Theory 30(4), 452–495 (1998) Dedicated to the memory of Mark Grigorievich Krein (1907–1989)

  20. Roe, J.: Personal Communication

  21. Roe J.: An index theorem on open manifolds. I. J. Differ. Geom. 27(1), 87–113 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Roe, J.: Index Theory, Coarse Geometry, and Topology of Manifolds, Volume 90 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1996)

  23. Roe, J.: Lectures on Coarse Geometry, Volume 31 of University Lecture Series. American Mathematical Society, Providence (2003)

  24. Schick, T.: The topology of positive scalar curvature. In: Proceedings of the International Congress of Mathematicians Seoul 2014, vol. 2, pp. 1285–1308. Kyung Moon SA Co. Ltd., Seoul (2014)

  25. Skandalis G., Tu J.L., Yu G.: The coarse Baum–Connes conjecture and groupoids. Topology 41(4), 807–834 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Špakula J., Willett R.: On rigidity of Roe algebras. Adv. Math. 249, 289–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Winter W.: Covering dimension for nuclear C*-algebras. J. Funct. Anal. 199(2), 535–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Winter W., Zacharias J.: The nuclear dimension of C*-algebras. Adv. Math. 224(2), 461–498 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wright N.: C 0 coarse geometry and scalar curvature. J. Funct. Anal. 197(2), 469–488 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Guoliang Y.: Zero-in-the-spectrum conjecture, positive scalar curvature and asymptotic dimension. Invent. Math. 127(1), 99–126 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yu G.: The Novikov conjecture for groups with finite asymptotic dimension. Ann. Math. (2) 147(2), 325–355 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu G.: The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space. Invent. Math. 139(1), 201–240 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

AT was supported by EPSRC EP/N00874X/1. JS was supported by Marie Curie FP7-PEOPLE-2013-CIG Coarse Analysis (631945).We would like to thank Ulrich Bunke, Alexander Engel, John Roe, Thomas Weighill, Stuart White, and Rufus Willett for comments and discussion relating to this piece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Tikuisis.

Additional information

Communicated by Y. Kawahigashi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Špakula, J., Tikuisis, A. Relative Commutant Pictures of Roe Algebras. Commun. Math. Phys. 365, 1019–1048 (2019). https://doi.org/10.1007/s00220-019-03313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03313-x

Navigation