Skip to main content
Log in

N-Particle Scattering in Relativistic Wedge-Local Quantum Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Multi-particle scattering states are constructed for massive Wigner particles in the general operator-algebraic setting of wedge-local quantum field theory. The apparent geometrical restriction of the conventional wedge-local Haag–Ruelle argument to two-particle scattering states is overcome with a swapping symmetry argument based on wedge duality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H.: Mathematical Theory of Quantum Fields, No. 101 in International Series of Monographs on Physics. Oxford University Press, Oxford (1999)

  2. Alazzawi S., Dybalski W.: Compton scattering in the Buchholz–Roberts framework of relativistic QED. Lett. Math. Phys. 107, 81–106 (2017). https://doi.org/10.1007/s11005-016-0889-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Albeverio S., Gottschalk H.: Scattering theory for quantum fields with indefinite metric. Commun. Math. Phys. 216, 491–513 (2001). https://doi.org/10.1007/s002200000332

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Arveson, W.: The harmonic analysis of automorphism groups. In: Operator Algebras and Applications, Part I (Kingston, Ont., 1980), no. 38 in Proceedings of Symposia in Pure Mathematics, pp. 199–269. AMS. (1982) https://doi.org/10.1090/pspum/038.1

    MATH  Google Scholar 

  5. Bachmann S., Dybalski W., Naaijkens P.: Lieb–Robinson bounds, Arveson spectrum and Haag–Ruelle scattering theory for gapped quantum spin systems. Ann. Henri Poincaré 17, 1737–1791 (2015). https://doi.org/10.1007/s00023-015-0440-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Baumgärtel H., Wollenberg M.: A class of nontrivial weakly local massive Wightman fields with interpolating properties. Commun. Math. Phys. 94, 331–352 (1984). https://doi.org/10.1007/BF01224829

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bisognano J.J., Wichmann E.H.: On the duality condition for a Hermitian scalar field. J. Math. Phys. 16, 985–1007 (1975). https://doi.org/10.1063/1.522605

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Borchers H.-J.: When does Lorentz invariance imply wedge duality?. Lett. Math. Phys. 35, 39–60 (1995). https://doi.org/10.1007/BF00739154

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Borchers H.-J., Buchholz D., Schroer B.: Polarization-free generators and the S-matrix. Commun. Math. Phys. 219, 125–140 (2001). https://doi.org/10.1007/s002200100411

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, vol. 1. Springer, Berlin (1987) https://doi.org/10.1007/978-3-662-02520-8

    Book  Google Scholar 

  11. Buchholz D.: Collision theory for massless bosons. Commun. Math. Phys. 52, 147–173 (1977). https://doi.org/10.1007/BF01625781

    Article  ADS  MathSciNet  Google Scholar 

  12. Buchholz, D.: private communications, (2017)

  13. Buchholz D., Lechner G., Summers S.J.: Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011). https://doi.org/10.1007/s00220-010-1137-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Buchholz, D., Summers, S.J.: Warped convolutions: a novel tool in the construction of quantum field theories. In Seiler, E., Sibold K. (ed.) Quantum Field Theory and Beyond. Essays in Honor of Wolfhart Zimmermann. World Scientific, Singapore, pp.107–121 (2008). https://doi.org/10.1142/9789812833556_0007

  15. Doplicher S., Fredenhagen K., Roberts J.E.: The quantum structure of space-time at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995). https://doi.org/10.1007/BF02104515

    Article  ADS  MATH  Google Scholar 

  16. Duell M.: Strengthened Reeh–Schlieder property and scattering in quantum field theories without mass gaps. Commun. Math. Phys. 352, 935–966 (2017). https://doi.org/10.1007/s00220-017-2841-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dybalski W.: Haag–Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005). https://doi.org/10.1007/s11005-005-2294-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Dybalski W., Gérard C.: A criterion for asymptotic completeness in local relativistic QFT. Commun. Math. Phys. 332, 1167–1202 (2014). https://doi.org/10.1007/s00220-014-2069-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Dybalski W., Tanimoto Y.: Asymptotic completeness in a class of massless relativistic quantum field theories. Commun. Math. Phys. 305, 427–440 (2011). https://doi.org/10.1007/s00220-010-1173-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fredenhagen K., Gaberdiel M.R., Rüger S.M.: Scattering states of plektons (particles with braid group statistics) in 2+1 dimensional quantum field theory. Commun. Math. Phys. 175, 319–335 (1996). https://doi.org/10.1007/BF02102411

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Grosse H., Lechner G.: Wedge-local quantum fields and noncommutative Minkowski space. JHEP 11, 012 (2007). https://doi.org/10.1088/1126-6708/2007/11/012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Haag R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112, 669–673 (1958). https://doi.org/10.1103/PhysRev.112.669

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hepp K.: On the connection between the LSZ and Wightman quantum field theory. Commun. Math. Phys. 1, 95–111 (1965). https://doi.org/10.1007/BF01646494

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Herdegen A.: Infraparticle problem, asymptotic fields and Haag–Ruelle theory. Ann. Henri Poincaré 15, 345–367 (2013). https://doi.org/10.1007/s00023-013-0242-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras II, Advanced Theory, vol. 16 of Graduate Studies in Mathematics. American Mathematical Society, Providence (1997)

  26. Lechner G.: Polarization free quantum fields and interaction. Lett. Math. Phys. 64, 137–154 (2003). https://doi.org/10.1023/A:1025772304804

    Article  MathSciNet  MATH  Google Scholar 

  27. Lechner, G.: On the construction of quantum field theories with factorizing S-matrices. Ph.D. thesis, Universität Göttingen, (2006). arXiv:math-ph/0611050

  28. Lechner, G.: Algebraic constructive quantum field theory: integrable models and deformation techniques. In: Brunetti R., Dappiaggi C., Fredenhagen K., Yngvason J. (eds.) Advances in Algebraic Quantum Field Theory, pp. 397–448. Springer, Berlin (2015) https://doi.org/10.1007/978-3-319-21353-8_10

    Chapter  Google Scholar 

  29. Longo, R., Tanimoto, Y., Ueda, Y.: Free products in AQFT. arXiv:1706.06070

  30. Morinelli V.: The Bisognano–Wichmann property on nets of standard subspaces, some sufficient conditions. Ann. Henri Poincaré. 19, 937–958 (2018). https://doi.org/10.1007/s00023-017-0636-4 arXiv:1703.06831

    Article  MathSciNet  MATH  Google Scholar 

  31. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 2, Fourier Analysis and Self-Adjointness. Academic Press, San Diego (1975)

  32. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 3, Scattering Theory. Academic Press, San Diego (1979)

  33. Ruelle D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta. 35, 147–163 (1962). https://doi.org/10.5169/seals-113272

    Article  MathSciNet  MATH  Google Scholar 

  34. Smirnov, F. A.: Form Factors in Completely Integrable Models of Quantum Field Theory, vol. 14 of Advanced Series in Mathematical Physics. World Scientific, Singapore (1992)

Download references

Acknowledgements

I am deeply indebted to Wojciech Dybalski for many valuable suggestions and his continuous support. Further I would like thank Detlev Buchholz for comments and communicating Lemma 3, Daniela Cadamuro for helpful discussions, and Yoh Tanimoto for comments on swapping and the foundations of Tomita-Takesaki theory. I also gratefully acknowledge funding by the DFG within Grant DY107/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Duell.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duell, M. N-Particle Scattering in Relativistic Wedge-Local Quantum Field Theory. Commun. Math. Phys. 364, 203–232 (2018). https://doi.org/10.1007/s00220-018-3183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3183-z

Navigation