Skip to main content
Log in

Loop Quantization and Symmetry: Configuration Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given two sets S1, S2 and unital C*-algebras \({\mathfrak{A}_1}\), \({\mathfrak{A}_2}\) of functions thereon, we show that a map \({\sigma : {\bf S}_1 \longrightarrow {\bf S}_2}\) can be lifted to a continuous map \({\bar\sigma : {\rm spec}\, \mathfrak{A}_1 \longrightarrow {\rm spec}\, \mathfrak{A}_2}\) iff \({\sigma^\ast \mathfrak{A}_2 := \{\sigma^\ast f\, |\, f \in \mathfrak{A}_2\} \subseteq \mathfrak{A}_1}\). Moreover, \({\bar \sigma}\) is unique if existing, and injective iff \({\sigma^\ast \mathfrak{A}_2}\) is dense. Then, we apply these results to loop quantum gravity and loop quantum cosmology. For all usual technical conventions, we decide whether the cosmological quantum configuration space is embedded into the gravitational one; indeed, both are spectra of some C*-algebras, say, \({\mathfrak{A}_{\rm cosm}}\) and \({\mathfrak{A}_{\rm grav}}\), respectively. Typically, there is no embedding, but one can always get an embedding by the defining \({\mathfrak{A}_{\rm cosm} := C^\ast(\sigma^\ast \mathfrak{A}_{\rm grav})}\), where \({\sigma}\) denotes the embedding between the classical configuration spaces. Finally, we explicitly determine \({C^\ast(\sigma^\ast \mathfrak{A}_{\rm grav})}\) in the homogeneous isotropic case for \({\mathfrak{A}_{\rm grav}}\) generated by the matrix functions of parallel transports along analytic paths. The cosmological quantum configuration space so equals the disjoint union of \({\mathbb{R}}\) and the Bohr compactification of \({\mathbb{R}}\), appropriately glued together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aastrup J., Grimstrup J.M., Nest R.: On spectral triples in quantum gravity I. Class. Quantum Gravity 26, 065011 (2009) arXiv:0802.1783 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alesci E., Cianfrani F.: A new perspective on cosmology in loop quantum gravity. Europhys. Lett. 104, 10001 (2013). arXiv:1210.4504 [gr-qc]

    Article  ADS  Google Scholar 

  3. Alesci E., Cianfrani F.: Quantum-reduced loop-gravity: relation with the full theory. Phys. Rev. D 88, 104001 (2013). arXiv:1309.6304 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  4. Alesci E., Cianfrani F.: Quantum-reduced loop gravity: cosmology. Phys. Rev. D 87, 083521 (2013). arXiv:1301.2245 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  5. Ashtekar A., Bojowald M., Lewandowski J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 9, 233–268 (2003) arXiv:gr-qc/0304074

    Article  MathSciNet  Google Scholar 

  6. Ashtekar A., Campiglia M.: On the uniqueness of kinematics of loop quantum cosmology. Class. Quantum Gravity 29, 242001 (2012). arXiv:1209.4374 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ashtekar A., Isham C.J.: Representations of the holonomy algebras of gravity and nonabelian gauge theories. Class. Quantum Gravity 9, 1433–1468 (1992) arXiv:hep-th/9202053

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ashtekar A., Lewandowski J.: Projective techniques and functional integration for gauge theories. J. Math. Phys. 36, 2170–2191 (1995). arXiv:gr-qc/9411046

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ashtekar, A., Lewandowski J.: Representation theory of analytic holonomy C * algebras. In: Baez, J.C. (ed.) Knots and Quantum Gravity (Riverside, CA, 1993), Oxford Lecture Series in Mathematics and its Applications 1, pp. 21–61. Oxford University Press, Oxford (1994). arXiv:gr-qc/9311010

  10. Ashtekar A., Singh P.: Loop quantum cosmology: a status report. Class. Quantum Gravity 28, 213001 (2011). arXiv:1108.0893 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Baez J.C., Sawin S.: Diffeomorphism-invariant spin network states. J. Funct. Anal. 158, 253–266 (1998). arXiv:q-alg/9708005

    Article  MathSciNet  MATH  Google Scholar 

  12. Baez J.C., Sawin S.: Functional integration on spaces of connections. J. Funct. Anal. 150, 1–26 (1997). arXiv:q-alg/9507023

    Article  MathSciNet  MATH  Google Scholar 

  13. Blackadar, B.: Operator Algebras: Theory of C *-Algebras and von Neumann Algebras (Encyclopaedia of Mathematical Sciences 122). Springer, Berlin (2006)

  14. Beetle Ch., Engle J., Hogan M.E., Mendonça P.: Diffeomorphism invariant cosmological symmetry in full quantum gravity. Int. J. Mod. Phys. D 25, 1642012 (2016). arXiv:1410.5609 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Bochner S.: Abstrakte Fastperiodische Funktionen. Acta Math. 61, 149–184 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bochner S.: Beiträge zur Theorie der fastperiodischen Funktionen. I. Teil. Funktionen einer Variablen. Math. Ann. 96, 119–147 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bodendorfer N.: A quantum reduction to Bianchi I models in loop quantum gravity. Phys. Rev. D 91, 081502 (2015). arXiv:1410.5608 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  18. Bodendorfer N., Lewandowski J., Świe zewski J.: A quantum reduction to spherical symmetry in loop quantum gravity. Phys. Lett. B 747, 18–21 (2015). arXiv:1410.5609 [gr-qc]

  19. Bojowald M.: Isotropic loop quantum cosmology. Class. Quantum Gravity 19, 2717–2742 (2002). arXiv:gr-qc/0202077

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Bojowald, M.: Loop quantum cosmology. Living Rev. Relativ. 11, 131 pp. (2008). (electronic). arXiv:gr-qc/0601085

  21. Bojowald M., Kastrup H.A.: Quantum symmetry reduction for diffeomorphism invariant theories of connections. Class. Quantum Gravity 17, 3009–3043 (2000). arXiv:hep-th/9907042

    Article  ADS  MATH  Google Scholar 

  22. Bourbaki, N.: General Topology: Chapters 1–4. Springer, Berlin (1989)

  23. Brunnemann J., Fleischhack Ch.: On the configuration spaces of homogeneous loop quantum cosmology and loop quantum gravity. Math. Phys. Anal. Geom. 15, 299–315 (2012). arXiv:0709.1621 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  24. Brunnemann, J., Koslowski, T.A.: Symmetry reduction of loop quantum gravity. Class. Quantum Gravity 28, 245014 (39 pp.) (2011). arXiv:1012.0053 [gr-qc]

  25. Engle J.: Embedding loop quantum cosmology without piecewise linearity. Class. Quantum Gravity 30, 085001 (2013). arXiv:1301.6210 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Engle J.: Piecewise linear loop quantum gravity. Class. Quant. Grav. 27, 035003 (2010). arXiv:0812.1270 (gr-qc)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Engle J.: Relating loop quantum cosmology to loop quantum gravity: symmetric sectors and embeddings. Class. Quantum Gravity 24, 5777–5802 (2007). arXiv:gr-qc/0701132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Engle J., Hanusch M.: Kinematical uniqueness of homogeneous isotropic LQC. Class. Quantum Gravity 34, 014001 (2017). arXiv:1604.08199 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Fleischhack Ch.: Hyphs and the Ashtekar–Lewandowski measure. J. Geom. Phys. 45, 231–251 (2003). arXiv:math-ph/0001007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Fleischhack, Ch.: Kinematical foundations of loop quantum cosmology. In: Finster, F., Kleiner, J., Röken, C., Tolksdorf, J. (eds.) Quantum Mathematical Physics (Quantum Mathematical Physics, Regensburg, 2014), pp. 201–232 (Birkhäuser, Basel, 2016). arXiv:1505.04400 [math-ph]

  31. Fleischhack, Ch.: Mathematische und physikalische Aspekte verallgemeinerter Eichfeldtheorien im Ashtekarprogramm. Dissertation, Universität Leipzig (2001)

  32. Fleischhack, Ch.: Parallel transports in webs. Math. Nachr. 263–264, 83–102 (2004). arXiv:math-ph/0304001

  33. Fleischhack Ch.: Regular connections among generalized connections. J. Geom. Phys. 47, 469–483 (2003). arXiv:math-ph/0211060

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Fleischhack Ch.: Representations of the Weyl algebra in quantum geometry. Commun. Math. Phys. 285, 67–140 (2009). arXiv:math-ph/0407006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Fleischhack, Ch.: Spectra of Abelian C *-subalgebra sums. arXiv:1409.5273 [math.FA]

  36. Giesel K., Thiemann T.: Algebraic quantum gravity (AQG) I. Conceptual setup. Class. Quantum Gravity 24, 2465–2498 (2007). arXiv:gr-qc/0607099

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Giesel K., Thiemann T.: Algebraic quantum gravity (AQG) II. Semiclassical analysis. Class. Quant. Gravity 24, 2499–2564 (2007). arXiv:gr-qc/0607100

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Hanusch, M.: A Characterization of invariant connections. SIGMA 10, 025 (24 pp.) (2014). arXiv:1310.0318 [math-ph]

  39. Hanusch, M.: Invariant connections and symmetry reduction in loop quantum gravity. Dissertation, Universität Paderborn (2014)

  40. Hanusch M.: Invariant connections in loop quantum gravity. Commun. Math. Phys. 343(1), 1–38 (2016). arXiv:1307.5303 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hanusch M.: Projective structures in loop quantum cosmology. J. Math. Anal. Appl. 428, 1005–1034 (2015). arXiv:1309.0713 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  42. Kelley, J.L.: General Topology. D. van Nostrand Company Inc., Toronto (1955)

  43. Kirby R.C., Siebenmann L.C.: On the triangulation of manifolds and the Hauptvermutung. Bull. Am. Math. Soc. 75, 742–749 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  44. Koslowski, T.A.: Holonomies of isotropic SU(2) connections on \({\mathbb{R}^3}\) (in preparation)

  45. Lewandowski J., Okołów A., Sahlmann H., Thiemann T.: Uniqueness of diffeomorphism invariant states on holonomy-flux algebras. Commun. Math. Phys. 267, 703–733 (2006). arXiv:gr-qc/0504147

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Gerard J.: Murphy: C *-Algebras and Operator Theory. Academic Press, San Diego (1990)

    Google Scholar 

  47. Olver, F.W.J.: Asymptotics and Special Functions. Computer Science and Applied Mathematics. Academic Press, New York (1974)

  48. Perez, A.: Spin foam approach to quantum gravity. Living Rev. Relativ. 16, 128 pp. (2013). (electronic). arXiv:1205.2019 [gr-qc]

  49. Pfeiffer, H.: Quantum general relativity and the classification of smooth manifolds. arXiv:gr-qc/0404088

  50. Rendall A.D.: Comment on a paper of Ashtekar and Isham. Class. Quantum Gravity 10, 605–608 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Rudin W.: Fourier Analysis on Groups. Wiley, New York (1990)

    Book  MATH  Google Scholar 

  52. Thiemann, T.: Modern Canonical Quantum General Relativity (Cambridge Monographs on Mathematical Physics). Cambridge University Press (2007)

  53. Zapata J.A.: A combinatorial approach to diffeomorphism invariant quantum gauge theories. J. Math. Phys. 38, 5663–5681 (1997). arXiv:gr-qc/9703037

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Fleischhack.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleischhack, C. Loop Quantization and Symmetry: Configuration Spaces. Commun. Math. Phys. 360, 481–521 (2018). https://doi.org/10.1007/s00220-017-3030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-3030-7

Navigation