Skip to main content
Log in

The Existence of Stable BGK Waves

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The 1D Vlasov-Poisson system is the simplest kinetic model for describing an electrostatic collisionless plasma, and the BGK waves are its famous exact steady solutions. They play an important role on the long time dynamics of a collisionless plasma as potential “final states” or “attractors”, thanks to many numerical simulations and observations. Despite their importance, the existence of stable BGK waves has been an open problem since the discovery of BGK waves in 1957. In this paper, linearly stable BGK waves are constructed near homogeneous states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical methods of classical mechanics. In: Translated from the Russian by Vogtmann K., Weinstein, A. (eds) Graduate Texts in Mathematics, 2nd edn. Springer, New York, pp 60 (1989)

  2. Armstrong T., Montgomery D.: Asymptotic state of the two-stream instability. J. Plasma Phys. 1(4), 425–433 (1967)

    Article  ADS  Google Scholar 

  3. Bellan P.M.: Fundamentals of Plasma Physics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  4. Manfredi G., Bertrand P.: Stability of Bernstein-Greene-Kruskal modes. Phys. Plasmas. 7(6), 2425–2431 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  5. Brunetti M., Califano F., Pegoraro F.: Asymptotic evolution of nonlinear Landau damping. Phys. Rev. E. 62, 4109–4114 (2000)

    Article  ADS  Google Scholar 

  6. Bernstein I., Greene J., Kruskal M.: Exact nonlinear plasma oscillations. Phys. Rev. 108(3), 546–550 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bedrossian J., Masmoudi N., Mouhot C.: Landau damping: paraproducts and Gevrey regularity. Ann. PDE. 2(1), 2:4 (2016)

    Article  MathSciNet  Google Scholar 

  8. Cheng Y., Gamba I.M., Morrison P.J.: Study of conservation and recurrence of Runge–Kutta discontinuous Galerkin schemes for Vlasov-Poisson systems. J. Sci. Comput. 56, 319–349 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng C.Z., Knorr G.: The integration of the Vlasov equation in configuration space. J. Comput. Phys. 22(3), 330–351 (1976)

    Article  ADS  Google Scholar 

  10. Demeio L., Zweifel P.F.: Numerical simulations of perturbed Vlasov equilibria. Phys. Fluids B. 2, 1252–1255 (1990)

    Article  ADS  Google Scholar 

  11. Demeio L., Holloway J.P.: Numerical simulations of BGK modes. J. Plasma Phys. 46, 63–84 (1991)

    Article  ADS  Google Scholar 

  12. Danielson J.R., Anderegg F., Driscoll C.F.: Measurement of Landau damping and the evolution to a BGK equilibrium. Phys. Rev. Lett. 92, 245003-1-4 (2004)

    Article  ADS  Google Scholar 

  13. Ghizzo A., Izrar B., Bertrand P., Fijalkow E., Feix M.R., Shoucri M.: Stability of Bernstein-Greene-Kruskal plasma equilibria. Numerical experiments over a long time. Phys. Fluids. 31(1), 72–82 (1988)

    Article  ADS  Google Scholar 

  14. Guo Y., Strauss W.: Instability of periodic BGK equilibria. Comm. Pure Appl. Math. XLVIII, 861–894 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, Y., Lin, Z.: Linear Landau damping near stable BGK waves. Work in preparation

  16. Hislop P.D., Sigal I.M.: Introduction to Spectral Theory. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  17. Kato, T.: Perturbation theory for linear operators. In: Grundlehren der Mathematischen Wissenschaften, Band 132, 2nd edn. Springer, Berlin (1976)

  18. Lin Z.: Instability of periodic BGK waves. Math. Res. Lett. 8, 521–534 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin Z.: Nonlinear instability of periodic waves for Vlasov-Poisson system. Commun. Pure Appl. Math. 58, 505–528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lin Z., Zeng C.: Small BGK waves and nonlinear Landau damping. Commun. Math. Phys. 306, 291–331 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Luque A., Schamel H.: Electrostatic trapping as a key to the dynamics of plasmas, fluids and other collective systems. Phys. Rep. 415, 261–359 (2005)

    Article  ADS  Google Scholar 

  22. Medvedev M.V., Diamond P.H., Rosenbluth M.N., Shevchenko V.I.: Asymptotic theory of nonlinear landau damping and particle trapping in waves of finite amplitude. Phys. Rev. Lett. 81, 5824 (1998)

    Article  ADS  Google Scholar 

  23. Mouhot C., Villani C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Manfredi G.: Long-time behavior of nonlinear Landau damping. Phys. Rev. Lett. 79, 2815–2818 (1997)

    Article  ADS  Google Scholar 

  25. Penrose O.: Electrostatic instability of a non-Maxwellian plasma. Phys. Fluids. 3, 258–265 (1960)

    Article  ADS  MATH  Google Scholar 

  26. Schamel H.: Cnoidal electron hole propagation: trapping, the forgotten nonlinearity in plasma and fluid dynamics. Phys. Plasmas. 19, 020501 (2012)

    Article  ADS  Google Scholar 

  27. Trivelpiece A.W., Krall N.A.: Principles of Plasma Physics. McGraw-Hill, New York (1973)

    Google Scholar 

  28. Valentini F., Carbone V., Veltri P., Mangeney A.: Wave-particle interaction and nonlinear Landau damping in collisionless electron plasmas. Transp. Theory Stat. Phys. 34, 89–101 (2005)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Lin.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Lin, Z. The Existence of Stable BGK Waves. Commun. Math. Phys. 352, 1121–1152 (2017). https://doi.org/10.1007/s00220-017-2873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2873-2

Navigation