Skip to main content
Log in

Ergodicity for the Stochastic Quantization Problems on the 2D-Torus

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the stochastic quantization problem on the two dimensional torus and establish ergodicity for the solutions. Furthermore, we prove a characterization of the \({\Phi^4_2}\) quantum field on the torus in terms of its density under translation. We also deduce that the \({\Phi^4_2}\) quantum field on the torus is an extreme point in the set of all L-symmetrizing measures, where L is the corresponding generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio S., Kondratiev Y.G., Röckner M.: Ergodicity for the stochastic dynamics of quasi-invariant measures with applications to Gibbs states. J. Funct. Anal. 149(2), 415–469 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio S., Röckner M.: Classical Dirichlet forms on topological vector spaces closability and a Cameron–Martin formula. J. Funct. Anal. 88, 395–436 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albeverio S., Röckner M.: Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms. Probab Theory Relat Field 89, 347–386 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bahouri H., Chemin J.-Y., Danchin R.: Fourier Analysis and Nonlinear Partial Differential Equations, Vol. 343 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg (2011)

    Google Scholar 

  5. Berglund, N., Di Gesù, G., Weber, H.: An Eyring–Kramers law for the stochastic AllenCahn equation in dimension two. arXiv:1604.05742v1 (2016)

  6. Bogachev V.I., Röckner M.: Regularity of invariant measures on finite and infinite dimensional spaces and applications. J. Funct. Anal. 133(1), 168–223 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Catellier, R., Chouk, K.: Paracontrolled Distributions and the 3-dimensional Stochastic Quantization Equation. arXiv:1310.6869

  8. Da Prato G., Debussche A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Da Prato G., Zabczyk J.: Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, vol. 229. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  10. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. Forum Math. Pi 3 no. 6 (2015)

  11. Glimm J., Jaffe A.: Quantum Physics: A Functional Integral Point of View. Springer, New York (1986)

    MATH  Google Scholar 

  12. Guerra F., Rosen J., Simon B.: The \({p(\Phi)_2}\) Euclidean quantum field theory as classical statistical mechanics. Ann. Math. 101, 111–259 (1975)

    Article  MathSciNet  Google Scholar 

  13. Hairer M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hairer M., Mattingly J.C., Scheutzow M.: Asymptotic coupling and a general form of Harris theorem with applications to stochastic delay equations. Probab. Theory Relat. Fields 149(1-2), 223–259 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hairer, M., Mattingly, J.C.: The strong Feller property for singular stochastic PDEs. arXiv:1610.03415v1 (2016)

  16. Jona-Lasinio G., Mitter P.K.: On the stochastic quantization of field theory. Commun. Math. Phys. 101(3), 409–436 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Kulik, A., Scheutzow, M.: Generalized couplings and convergence of transition probabilities. arXiv:1512.06359v2

  18. Kurtz T.G.: The Yamada–Watanabe–Engelbert theorem for general stochastic equations and inequalities. Electron. J. Probab. 12, 951–965 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma Z.M., Röckner M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  20. Mikulevicius, R., Rozovskii, B.: Martingale problems for stochasic PDE’s. In: Carmona, R., Rozovskii, B.L. (eds.) Stochastic Partial Differential Equations: Six Perspectives, Volume 64 of Mathematical Surveys Monographs, pp. 243–325. American Mathematical Society, Providence (1999)

  21. Mourrat, J., Weber, H.: Global well-posedness of the dynamic \({\Phi^4}\) model in the plane. arXiv:1501.06191v1 to appear in the Annals of Probability

  22. Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamic \({\Phi^4_3}\) model on the torus. arXiv:1601.01234

  23. Nualart D.: The Malliavin Calculus and Related Topics. Probability and Its Applications (New York). Springer, Berlin (2006)

    MATH  Google Scholar 

  24. Preston C.: Random Fields. Lecture Notes in Mathematics, Vol. 534. Springer, Berlin (1976)

    Google Scholar 

  25. Parisi G., Wu Y.S.: Perturbation theory without gauge fixing. Sci. Sin. 24(4), 483–496 (1981)

    MathSciNet  Google Scholar 

  26. Resnick, S.: Dynamical Problems in Non-linear Advective Partial Differential Equations. Ph.D. thesis, University of Chicago, Chicago (1995)

  27. Röckner M.: Specifications and Martin boundaries for \({p(\Phi)_2}\)-random fields. Commun. Math. Phys. 106, 105–135 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Röckner, M., Zhu, R., Zhu, X.: Restricted Markov unqiueness for the stochastic quantization of \({p(\Phi)_2}\) and its applications. arXiv:1511.08030 (2015), to appear in Journal of Functional Analysis

  29. Röckner M., Zhu R., Zhu X.: Sub- and supercritical stochastic quasi-geostrophic equation. Ann. Probab. 43(3), 1202–1273 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simon B.: The \({p(\Phi)_2}\) Euclidean (Quantum) Field Theory. Princeton University Press, Princeton (1974)

    Google Scholar 

  31. Sickel W.: Periodic spaces and relations to strong summability of multiple Fourier series. Math. Nachr. 124, 15–44 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stein E.M., Weiss G.L.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  33. Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland Mathematical Library, vol. 18. North-Holland, Amsterdam (1978)

    Google Scholar 

  34. Triebel H.: Theory of Function Spaces III. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  35. Tsatsoulis, P., Weber, H.: Spectral Gap for the Stochastic Quantization Equation on the 2-dimensional Torus (2016). arXiv:1609.08447

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongchan Zhu.

Additional information

Communicated by M. Hairer

Research supported in part by NSFC (Nos. 11401019, 11671035), the Fundamental Research Funds for the Central Universities (2014RC008), and DFG through CRC 701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röckner, M., Zhu, R. & Zhu, X. Ergodicity for the Stochastic Quantization Problems on the 2D-Torus. Commun. Math. Phys. 352, 1061–1090 (2017). https://doi.org/10.1007/s00220-017-2865-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-017-2865-2

Navigation