Skip to main content
Log in

Collision Index and Stability of Elliptic Relative Equilibria in Planar \({n}\)-body Problem

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is well known that a planar central configuration of the \({n}\)-body problem gives rise to solutions where each particle moves on a specific Keplerian orbit while the totality of the particles move on a homographic motion. When the eccentricity \({e}\) of the Keplerian orbit belongs in \({[0,1)}\), following Meyer and Schmidt, we call such solutions elliptic relative equilibria (shortly, ERE). In order to study the linear stability of ERE in the near-collision case, namely when \({1-e}\) is small enough, we introduce the collision index for planar central configurations. The collision index is a Maslov-type index for heteroclinic orbits and orbits parametrised by half-lines that, according to the definition given by Hu and Portaluri (An index theory for unbounded motions of Hamiltonian systems, Hu and Portaluri (2015, preprint)), we shall refer to as half-clinic orbits and whose definition in this context, is essentially based on a blow up technique in the case \({e=1}\). We get the fundamental properties of collision index and approximation theorems. As applications, we give some new hyperbolic criteria and prove that, generically, the ERE of minimal central configurations are hyperbolic in the near-collision case, and we give a detailed analysis of Euler collinear orbits in the near-collision case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbondandolo A., Majer P.: Ordinary differential operators in Hilbert spaces and Fredholm pairs. Math. Z. 243, 525–562 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albouy A., Cabral H.E., Santos A.: Some problems on the classical n-body problem. Celest. Mech. Dyn. Astron. 113(4), 369–375 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  3. Arnold V.I.: On a characteristic class entering into conditions of quantization. Funct. Anal. Appl. 1, 1–8 (1967)

    Article  MathSciNet  Google Scholar 

  4. Barutello V., Secchi S.: Morse index properties of colliding solutions to the N-body problem. Ann. IHP. Anal. Non Linéaire 25, 539–565 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barutello, V., Hu, X., Portaluri, A., Terracini, S.: An index theorem for colliding solutions in the \({N}\)-body type problem (2015, preprint)

  6. Cappell S.E., Lee R., Miller E.Y.: On the Maslov index. Commun. Pure Appl. Math. 47(2), 121–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chardard F., Dias F., Bridges T.J.: Computing the Maslov index of solitary waves. Part 1: Hamiltonian systems on a four-dimensional phase space. Phys. D. 238(18), 1841–1867 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chardard F., Dias F., Bridges T.J.: Computing the Maslov index of solitary waves, Part 2: phase space with dimension greater than four. Phys. D 240(17), 1334–1344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chardard, F., Dias, F., Bridges, T.J.: Computational aspects of the Maslov index of solitary waves (2009), pp. 1–59. http://hal.archives-ouvertes.fr/hal-00383888/fr

  10. Chen C., Hu X.: Maslov index for homoclinic orbits of Hamiltonian systems. Ann. IHP. Anal. Non Linéaire 24, 589–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chenciner A., Desolneux N.: Minima de l’inthgrale d’action et équilibres relatifs de \({n}\) corps (French) [Minima of the action integral and relative equilibria of n bodies]. C. R. Acad. Sci. Paris Sr. I Math. 326(10), 1209–1212 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers, Inc., New York (1953)

  13. Danby J.M.A.: The stability of the triangular Lagrangian point in the general problem of three bodies. Astron. J. 69, 294–296 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  14. Euler L.: De motu restilineo trium corporum se mutus attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)

    Google Scholar 

  15. Gascheau M.: Examen d’une classe d’équations différentielles et application à un cas particulier du problème des trois corps. Comptes. Rend. 16, 393–394 (1843)

    Google Scholar 

  16. Hu, X., Portaluri, A.: An index theory for unbounded motions of Hamiltonian systems (2015, preprint)

  17. Hu X., Long Y., Sun S.: Linear stability of elliptic Lagrangian solutions of the planar three-body problem via index theory. Arch. Ration. Mech. Anal. 213(3), 993–1045 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hu X., Sun S.: Index and stability of symmetric periodic orbits in Hamiltonian systems with its application to figure-eight orbit. Commun. Math. Phys. 290, 737–777 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hu X., Sun S.: Morse index and stability of elliptic Lagrangian solutions in the planar three-body problem. Adv. Math. 223, 98–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu X., Ou Y.: An estimation for the hyperbolic region of elliptic lagrangian solutions in the planar three-body problem. Regul. Chaotic Dyn. 18(6), 732–741 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hu X., Ou Y., Wang P.: Trace formula for linear Hamiltonian systems with its applications to elliptic Lagrangian solutions. Arch. Ration. Mech. Anal. 216(1), 313–357 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lagrange, J.L.: Essai sur le problème des trois corps. Chapitre II. Œuvres Tome 6, Gauthier-Villars, Paris, pp. 272–292 (1772)

  23. Liu C., Zhang D.: Iteration theory of L-index and multiplicity of brake orbits. J. Differ. Equ. 257(4), 1194–1245 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Long, Y.: Index Theory for Symplectic Paths with Applications, Progress in Math., vol. 207. Birkhäuser, Basel (2002)

  25. Long Y., Zhu C.: Maslov-type index theory for symplectic paths and spectral flow II. Chin. Ann. Math. Ser. B 21(1), 89–108 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Long Y., Zhang D., Zhu C.: Multiple brake orbits in bounded convex symmetric domains. Adv. Math. 203(2), 568–635 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Long, Y., Zhou, Q.: Maslov-type indices and linear stability of elliptic Euler solutions of the three-body problem (2015, preprint)

  28. Martínez R., Samà A., Simó C.: Stability diagram for 4D linear periodic systems with applications to homographic solutions. J. Differ. Equ. 226, 619–651 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Martínez R., Samà A., Simó C.: Analysis of the stability of a family of singular-limit linear periodic systems in \({\mathbb{R}^4}\). Appl. J. Differ. Equ. 226, 652–686 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. McGehee R.: Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Meyer K.R., Schmidt D.S.: Elliptic relative equilibria in the N-body problem. J. Differ. Equ. 214, 256–298 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Moeckel R.: Chaotic dynamics near triple collision. Arch. Ration. Mech. 107(1), 37–69 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  33. Moeckel R.: Linear stability of relative equilibria with a dominant mass. J. Dyn. Differ. Equ. 6(1), 37–51 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Moeckel, R.: Linear stability analysis of some symmetrical classes of relative equilibria. Hamiltonian dynamical systems (Cincinnati, OH, 1992), pp. 291–317, IMA Vol. Math. Appl., vol. 63. Springer, New York (1995)

  35. Moeckel R.: On central configurations. Math. Z. 205(4), 499–517 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ou Y.: Hyperbolicity of elliptic Lagrangian orbits in planer three body problem. Sci. China Math. 57(7), 1539–1544 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Robbin J., Salamon D.: The Maslov index for paths. Topology 32, 827–844 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Roberts G.E.: Linear stability of the elliptic Lagrangian triangle solutions in the three-body problem. J. Differ. Equ. 182, 191–218 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Roberts G.E.: Spectral instability of relative equilibria in the planar \({n}\)-body problem. Nonlinearity 12(4), 757–769 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Roberts, G.E.: Linear stability in the \({1+n}\)-gon relative equilibrium. Hamiltonian systems and celestial mechanics (Pátzcuaro, 1998), pp. 303–330. World Sci. Monogr. Ser. Math., vol. 6. World Sci. Publ., River Edge (2000)

  41. Routh E.J.: On Laplace’s three particles with a supplement on the stability or their motion. Proc. Lond. Math. Soc. 6, 86–97 (1875)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijun Hu.

Additional information

Communicated by K. Khanin

X. Hu was partially supported by NSFC (No.11425105, 11131004) and NCET. Y. Ou was partially supported by NSFC (No.11131004) and CPSF (No. 2015M580193).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Ou, Y. Collision Index and Stability of Elliptic Relative Equilibria in Planar \({n}\)-body Problem. Commun. Math. Phys. 348, 803–845 (2016). https://doi.org/10.1007/s00220-016-2695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2695-7

Navigation