Skip to main content
Log in

A Rigorous Geometric Derivation of the Chiral Anomaly in Curved Backgrounds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We discuss the chiral anomaly for a Weyl field in a curved background and show that a novel index theorem for the Lorentzian Dirac operator can be applied to describe the gravitational chiral anomaly. A formula for the total charge generated by the gravitational and gauge field background is derived directly in Lorentzian signature and in a mathematically rigorous manner. It contains a term identical to the integrand in the Atiyah–Singer index theorem and another term involving the \({\eta}\)-invariant of the Cauchy hypersurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler S.L.: Axial–vector vertex in spinor electrodynamics. Phys. Rev. 177(5), 2426–2438 (1969)

    Article  ADS  Google Scholar 

  2. Álvarez-Gaumé L., Ginsparg P.: The structure of gauge and gravitational anomalies. Ann. Phys. 161(2), 423–490 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Araki, H.: On quasifree states of CAR and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. 6, 385–442 (1970/71)

  4. Avron J., Seiler R., Simon B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bär C.: Green-hyperbolic operators on globally hyperbolic spacetimes. Commun. Math. Phys. 333(3), 1585–1615 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. In: Global Differential Geometry. Springer Proc. Math., vol. 17, pp. 359–400. Springer, Heidelberg (2012)

  7. Bär, C., Strohmaier, A.: An index theorem for Lorentzian manifolds with compact spacelike Cauchy boundary (2015). arXiv:1506.00959

  8. Bell J.S., Jackiw R.: A PCAC puzzle: \({\pi_0 \to \gamma \gamma}\) in the \({\sigma}\)-model. Il Nuovo Cimento A 60(1), 47–61 (1969)

    Article  ADS  Google Scholar 

  9. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Springer, Berlin (2004). (Corrected reprint of the 1992 original)

  10. Bertlmann R.A.: Anomalies in Quantum Field Theory. Oxford University Press, Oxford (2000)

    Book  MATH  Google Scholar 

  11. Bongaarts P.J.M.: The electron–positron field, coupled to external electromagnetic potentials, as an elementary C* algebra theory. Ann. Phys. 56, 108–139 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bunke U., Hirschmann T.: The index of the scattering operator on the positive spectral subspace. Commun. Math. Phys. 148(3), 487–502 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Carey A.L., Hurst C.A., O’Brien D.M.: Automorphisms of the canonical anticommutation relations and index theory. J. Funct. Anal. 48(3), 360–393 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Christensen S.M., Duff M.J.: New gravitational index theorems and super theorems. Nucl. Phys. B 154(2), 301–342 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dappiaggi C., Hack T.-P., Pinamonti N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21(10), 1241–1312 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dawson S.P., Fewster C.J.: An explicit quantum weak energy inequality for Dirac fields in curved spacetimes. Class. Quant. Grav. 23(23), 6659–6681 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Delbourgo R., Salam A.: The gravitational correction to PCAC. Phys. Lett. B 40(3), 381–382 (1972)

    Article  ADS  Google Scholar 

  18. Dimock J.: Dirac quantum fields on a manifold. Trans. Am. Math. Soc. 269(1), 133–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dowker J.S.: Another discussion of the axial vector anomaly and the index theorem. J. Phys. A 11(2), 347–360 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  20. Fujikawa K.: Evaluation of the chiral anomaly in gauge theories with \({\gamma_{5}}\) couplings. Phys. Rev. D (3) 29(2), 285–292 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  21. Fujikawa K., Ojima S., Yajima S.: Simple evaluation of chiral anomalies in the path-integral approach. Phys. Rev. D (3) 34(10), 3223–3228 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gibbons G.W.: Cosmological fermion-number non-conservation. Phys. Lett. B 84(4), 431–434 (1979)

    Article  ADS  Google Scholar 

  23. Gibbons G.W.: Spectral asymmetry and quantum field theory in curved spacetime. Ann. Phys. 125(1), 98–116 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  24. Gibbons G.W., Richer J: Gravitational creation of odd numbers of fermions. Phys. Lett. B 89(3), 338–340 (1980)

    Article  ADS  Google Scholar 

  25. Gornet, R., Richarson, K.: The eta invariant of two-step nilmanifolds (2012). arXiv:1210.8070

  26. Hollands S.: The Hadamard condition for Dirac fields and adiabatic states on Robertson–Walker spacetimes. Commun. Math. Phys. 216(3), 635–661 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kimura T.: Divergence of axial-vector current in the gravitational field. Progr. Theor. Phys. 42(5), 1191–1205 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  28. Klaus M., Scharf G.: The regular external field problem in quantum electrodynamics. Helv. Phys. Acta 50(6), 779–802 (1977)

    MathSciNet  Google Scholar 

  29. Klaus M., Scharf G.: Vacuum polarization in Fock space. Helv. Phys. Acta 50(6), 803–814 (1977)

    MathSciNet  Google Scholar 

  30. Lohiya D.: Anomalous production of chiral charge from black holes. Ann. Phys. 145(1), 116–130 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lundberg L.-E.: Quasi-free “second quantization”. Commun. Math. Phys. 50(2), 103–112 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Matsui T.: The index of scattering operators of dirac equations. Commun. Math. Phys. 110(4), 553–571 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Matsui T.: The index of scattering operators of dirac equations, ii. J. Funct. Anal. 94(1), 93–109 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bech Nielsen H., Ninomiya M.: The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130(6), 389–396 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  35. Nielsen N.K., Römer H., Schroer B.: Anomalous currents in curved space. Nucl. Phys. B 136(3), 475–492 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  36. Plymen R.J., Robinson P.L.: Spinors in Hilbert Space. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  37. Sahlmann H., Verch R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13(10), 1203–1246 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wald R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. University of Chicago Press, Chicago (1994)

    MATH  Google Scholar 

  39. Xiong, J., Kushwaha, S.K., Liang, T., Krizan, J.W., Wang, W., Cava, R.J., Ong, N.P.: Signature of the chiral anomaly in a Dirac semimetal: a current plume steered by a magnetic field (2015). arXiv:1503.08179

  40. Zahn J.: Locally covariant chiral fermions and anomalies. Nucl. Phys. B 890, 1–16 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Bär.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bär, C., Strohmaier, A. A Rigorous Geometric Derivation of the Chiral Anomaly in Curved Backgrounds. Commun. Math. Phys. 347, 703–721 (2016). https://doi.org/10.1007/s00220-016-2664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2664-1

Navigation