Skip to main content
Log in

Anosov Geodesic Flows, Billiards and Linkages

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Any smooth surface in \({{\mathbb R}^{3}}\) may be flattened along the z-axis, and the flattened surface becomes close to a billiard table in \({{\mathbb R}^{2}}\). We show that, under some hypotheses, the geodesic flow of this surface converges locally uniformly to the billiard flow. Moreover, if the billiard is dispersive and has finite horizon, then the geodesic flow of the corresponding surface is Anosov. We apply this result to the theory of mechanical linkages and their dynamics: we provide a new example of a simple linkage whose physical behavior is Anosov. For the first time, the edge lengths of the mechanism are given explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d V.I.: Small denominators and problems of stability of motion in classical and celestial mechanics. Russ. Math. Surv. 18(6), 85–191 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Burago, D., Ferleger, S., Kononenko, A.: Uniform estimates on the number of collisions in semi-dispersing billiards. Ann. Math., pp. 695–708 (1998)

  3. Birknoff, G.D.: Dynamical systems (1927)

  4. Bálint P., Tóth I.P.: Correlation decay in certain soft billiards. Commun. Math. Phys. 243(1), 55–91 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Donnay V.J., Pugh C.: Anosov geodesic flows for embedded surfaces. Asterisque 287, 61–69 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Hasselblatt, B., Katok, A. (eds.): Handbook of Dynamical Systems, vol. 1A. North-Holland, Amsterdam (2002)

  7. Hunt T.J., MacKay R.S.: Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor. Nonlinearity 16(4), 1499–1510 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ivanov N.V.: Approximation of smooth manifolds by real algebraic sets. Russ. Math. Surv. 37(1), 1–59 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jordan D., Steiner M.: Compact surfaces as configuration spaces of mechanical linkages. Israel J. Math. 122(1), 175–187 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kapovich M., Millson J.J.: Universality theorems for configuration spaces of planar linkages. Topology 41(6), 1051–1107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kourganoff, M.: Universality theorems for linkages in homogeneous surfaces (2014, preprint). arXiv:1407.6815

  12. Magalhães M.L.S., Pollicott M.: Geometry and dynamics of planar linkages. Commun. Math. Phys. 317(3), 615–634 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Nash J.: The imbedding problem for Riemannian manifolds. Ann. Math. (2) 63, 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sinai Y.G.: Dynamical systems with elastic reflections, ergodic properties of dispersing billiards. Uspekhi Matematicheskikh Nauk 25(2), 141–192 (1970)

    MathSciNet  MATH  Google Scholar 

  15. Tognoli A.: Su una congettura di nash. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 27(1), 167–185 (1973)

    MathSciNet  MATH  Google Scholar 

  16. Turaev D., Rom-Kedar V.: Elliptic islands appearing in near-ergodic flows. Nonlinearity 11(3), 575 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Thurston W.P., Weeks J.R.: The mathematics of three-dimensional manifolds. Sci. Am. 251, 108 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickaël Kourganoff.

Additional information

Communicated by K. Khanin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kourganoff, M. Anosov Geodesic Flows, Billiards and Linkages. Commun. Math. Phys. 344, 831–856 (2016). https://doi.org/10.1007/s00220-016-2646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2646-3

Keywords

Navigation