Skip to main content
Log in

Positive Casimir and Central Characters of Split Real Quantum Groups

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe the generalized Casimir operators and their actions on the positive representations \({\mathcal{P}_\lambda}\) of the modular double of split real quantum groups \({\mathcal{U}_{q\tilde{q}}(\mathfrak{g}_\mathbb{R})}\). We introduce the notion of virtual highest and lowest weights, and show that the central characters admit positive values for all parameters \({\lambda}\). We show that their image defines a semi-algebraic region bounded by real points of the discriminant variety independent of q, and we discuss explicit examples in the lower rank cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bytsko A.G., Teschner K.: R-operator, co-product and Haar-measure for the modular double of \({\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))}\). Commun. Math. Phys. 240, 171–196 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Carter R.: Lie Algebras of Finite and Affine Type, vol. 96. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  3. Drinfeld V.G.: Hopf algebras and the quantum Yang–Baxter equation. Doklady Akademii Nauk SSSR 283(5), 1060–1064 (1985)

    MathSciNet  Google Scholar 

  4. Etingof P.: Central elements for quantum affine algebras and affine Macdonald’s operators. Math. Res. Lett. 2, 611–628 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faddeev L.D.: Discrete Heisenberg–Weyl group and modular group. Lett. Math. Phys. 34, 249–254 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Faddeev, L.D.: Modular double of quantum group. Math. Phys. Stud. 21, 149–156 (2000). arXiv:math/9912078v1 [math.QA]

  7. Fock V.V., Goncharov A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publications Mathmatiques de l’Institut des Hautes tudes Scientifiques 103(1), 1–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fock V.V., Goncharov A.B.: The quantum dilogarithm and representations of the quantum cluster varieties. Invent. Math. 175, 223–286 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Frenkel I., Ip I.: Positive representations of split real quantum groups and future perspectives. Int. Math. Res. Not. 2014(8), 2126–2164 (2014)

    MathSciNet  MATH  Google Scholar 

  10. Gross B.: On the centralizer of a regular, semi-simple, stable conjugacy class. Represent. Theory 9, 287–296 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ip, I.: Positive representations and harmonic analysis of split real quantum groups. Ph.D. Thesis, Yale University (2012)

  12. Ip I.: Representation of the quantum plane, its quantum double and harmonic analysis on \({GL_q^+(2,R)}\). Selecta Mathematica New Series 19(4), 987–1082 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ip, I.: Positive representations of split real simply-laced quantum groups (2012, preprint). arXiv:1203.2018

  14. Ip I.: Positive representations of split real non-simply-laced quantum groups. J. Algebra 425, 245–276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ip I.: Positive representations of split real quantum groups: the universal R operator. Int. Math. Res. Not. 2014(20), 5648–5666 (2014)

    Google Scholar 

  16. Ip, I.: Positive representations, multiplier Hopf algebra, and continuous canonical basis. In: String Theory, Integrable Systems and Representation Theory. Proceedings of 2013 RIMS Conference (2014) (to appear)

  17. Ip, I.: On tensor products of positive representations of split real quantum Borel subalgebra \({\mathcal{U}_{q\tilde{q}}(\mathfrak{b}_\mathbb{R})}\) (2014, preprint). arXiv:1405.4786

  18. Jimbo M.: A q-difference analogue of \({\mathcal{U}(\mathfrak{g})}\) and the Yang–Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Kashaev, R.M.: The quantum dilogarithm and Dehn twist in quantum Teichmüller theory. In: Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, Ukraine, September 25–30, 2000), NATO Sci. Ser. II Math. Phys. Chem., vol. 35, Kluwer, Dordrecht, pp. 211–221 (2001)

  20. Kirillov A., Reshetikhin N.: q-Weyl group and a multiplicative formula for universal R matrices. Commun. Math. Phys. 134, 421–431 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Korogodski, L.I., Soibelman, Y.S.: Algebras of Functions on Quantum Groups: Part I, vol. 56. American Mathematical Society, Providence (1998)

  22. Levendorskiĭ S., Soibelman Ya.: Some applications of the quantum Weyl groups. J. Geom. Phys. 7(2), 241–254 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lusztig G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. Math. 70, 237 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lusztig G.: Canonical bases arising from quantized enveloping algebras. J. AMS 3(3), 447–498 (1990)

    MathSciNet  MATH  Google Scholar 

  25. Nidaiev, I., Teschner, J.: On the relation between the modular double of \({\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))}\) and the quantum Teichmüller theory (2013, preprint). arXiv:1302.3454

  26. Ponsot, B., Teschner, J.: Liouville bootstrap via harmonic analysis on a noncompact quantum group (1999, preprint). arXiv:hep-th/9911110

  27. Ponsot B., Teschner J.: Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of \({\mathcal{U}_q(\mathfrak{sl}(2,\mathbb{R}))}\). Commun. Math. Phys. 224, 613–655 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D.: Quantization of Lie groups and Lie algebras. Leningr. Math. J. 1(1), 193–225 (1990)

    MathSciNet  MATH  Google Scholar 

  29. Rodrguez Plaza M.J.: Casimir operators of \({U_q\mathfrak{sl}(3)}\). J. Math. Phys. 32, 2020 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Saito K.: On a linear structure of the quotient variety by a finite reflexion group. Publ. RIMS Kyoto Univ. 29, 535–579 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saito K.: Polyhedra dual to the Weyl chamber decomposition: a précis. Publ. RIMS Kyoto Univ. 40, 1337–1384 (2004)

    Article  MATH  Google Scholar 

  32. Zhang R.B., Gould M.D., Braken A.J.: Quantum group invariants and link polynomials. Commum. Math. Phys. 137, 13–27 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan C. H. Ip.

Additional information

Communicated by N. Reshetikhin

Dedicated to the memory of my grandfather N. Y. Wong (1926–2015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ip, I.C.H. Positive Casimir and Central Characters of Split Real Quantum Groups. Commun. Math. Phys. 344, 857–888 (2016). https://doi.org/10.1007/s00220-016-2639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2639-2

Keywords

Navigation