Skip to main content
Log in

A Quantitative Vainberg Method for Black Box Scattering

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We give a quantitative version of Vainberg’s method relating pole free regions to propagation of singularities for black box scatterers. In particular, we show that there is a logarithmic resonance free region near the real axis of size \({\tau}\) with polynomial bounds on the resolvent if and only if the wave propagator gains derivatives at rate \({\tau}\). Next we show that if there exist singularities in the wave trace at times tending to infinity which smooth at rate \({\tau}\), then there are resonances in logarithmic strips whose width is given by \({\tau}\). As our main application of these results, we give sharp bounds on the size of resonance free regions in scattering on geometrically nontrapping manifolds with conic points. Moreover, these bounds are generically optimal on exteriors of nontrapping polygonal domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baskin D., Wunsch J.: Resolvent estimates and local decay of waves on conic manifolds. J. Differ. Geom. 95(2), 183–214 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Cheeger J., Taylor M.: On the diffraction of waves by conical singularities.I. Commun. Pure Appl. Math. 35(3), 275–331 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dyatlov, S., Zworski, M.: Mathematical theory of scattering resonances.

  4. Ford G.A., Wunsch, J.: The diffractive wave trace on manifolds with conic singularities. (2014). arXiv preprint arXiv:1411.6913

  5. Galkowski, J.: Distribution of resonances in scattering by thin barriers. (2014). arXiv preprint, arXiv:1404.3709

  6. Galkowski, J., Smith, H.: Restriction bounds for the free resolvent and resonances in lossy scattering. Int. Math. Res. Not (2014)

  7. Hillairet L.: Contribution of periodic diffractive geodesics. J. Funct. Anal. 226(1), 48–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hillairet, L., Wunsch, J.: Existence of resonances in scattering by conic singularities. Personal communication (2015)

  9. Lax, P.D., Phillips, R.S.: Scattering theory, volume 26 of Pure and Applied Mathematics. Academic Press, Inc., Boston, MA, second edition, (1989). With appendices by Cathleen S. Morawetz and Georg Schmidt.

  10. Melrose R., Vasy A., Wunsch J.: Propagation of singularities for the wave equation on edge manifolds. Duke Math. J. 144(1), 109–193 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Melrose R., Wunsch J.: Propagation of singularities for the wave equation on conic manifolds. Invent. Math. 156(2), 235–299 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Sjöstrand, J.: A trace formula and review of some estimates for resonances. In: Microlocal analysis and spectral theory (Lucca, 1996), vol. 490 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 377–437. Kluwer Acad. Publ., Dordrecht (1997)

  13. Sjöstrand J., Zworski M.: Complex scaling and the distribution of scattering poles. J. Am. Math. Soc. 4(4), 729–769 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sjöstrand J., Zworski M.: Lower bounds on the number of scattering poles. Commun. Partial Differ. Equ. 18(5-6), 847–857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sjöstrand J., Zworski M.: Lower bounds on the number of scattering poles. II. J. Funct. Anal. 123(2), 336–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stefanov P.: Sharp upper bounds on the number of the scattering poles. J. Funct. Anal. 231(1), 111–142 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tang S.-H., Zworski M.: Resonance expansions of scattered waves. Commun. Pure Appl. Math. 53(10), 1305–1334 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vaĭnberg B.R.: The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as \({t\rightarrow \infty }\) of the solutions of nonstationary problems. Uspehi Mat. Nauk. 30(2(182)), 3–55 (1975)

    MathSciNet  Google Scholar 

  19. Vaĭnberg, B.R.: Asymptotic methods in equations of mathematical physics. Gordon & Breach Science Publishers, New York, (1989). Translated from the Russian by E. Primrose.

  20. Vodev G.: Sharp bounds on the number of scattering poles in even-dimensional spaces. Duke Math. J. 74(1), 1–17 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vodev G.: Sharp bounds on the number of scattering poles in the two-dimensional case. Math. Nachr. 170, 287–297 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zworski M.: Poisson formula for resonances in even dimensions. Asian J. Math. 2(3), 609–617 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Galkowski.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galkowski, J. A Quantitative Vainberg Method for Black Box Scattering. Commun. Math. Phys. 349, 527–549 (2017). https://doi.org/10.1007/s00220-016-2635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2635-6

Keywords

Navigation