Skip to main content
Log in

Harmonic Pinnacles in the Discrete Gaussian Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The 2D Discrete Gaussian model gives each height function \({\eta : {\mathbb{Z}^2\to\mathbb{Z}}}\) a probability proportional to \({\exp(-\beta \mathcal{H}(\eta))}\), where \({\beta}\) is the inverse-temperature and \({\mathcal{H}(\eta) = \sum_{x\sim y}(\eta_x-\eta_y)^2}\) sums over nearest-neighbor bonds. We consider the model at large fixed \({\beta}\), where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an \({L\times L}\) box with 0 boundary conditions concentrates on two integers M, M + 1 with \({M\sim \sqrt{(1/2\pi\beta)\log L\log\log L}}\). The key is a large deviation estimate for the height at the origin in \({\mathbb{Z}^{2}}\), dominated by “harmonic pinnacles”, integer approximations of a harmonic variational problem. Second, in this model conditioned on \({\eta\geq 0}\) (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where \({H\sim M/\sqrt{2}}\). This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order \({\sqrt{\log L}}\). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham D.B. : Surface structures and phase transitions—exact results. In: Domb, C., Lebowitz, J.L. (eds) Phase Transitions and Critical Phenomena, pp. 1–74. Academic Press, UK (1986)

  2. Bolthausen E., Deuschel J-D., Giacomin G.: Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29(4), 1670–1692 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolthausen E., Deuschel J.D., Zeitouni O.: Entropic repulsion of the lattice free field. Commun. Math. Phys. 170(2), 417–443 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Brandenberger R., Wayne C.E.: Decay of correlations in surface models. J. Stat. Phys. 27(3), 425–440 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bricmont J., Fontaine J.-R., Lebowitz J.L.: Surface tension, percolation, and roughening. J. Stat. Phys. 29(2), 193–203 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bricmont J., El Mellouki A., Fröhlich J.: Random surfaces in statistical mechanics: roughening, rounding, wetting. J. Stat. Phys. 42(5-6), 743–798 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. Caputo P., Lubetzky E., Martinelli F., Sly A., Toninelli F.L.: Dynamics of 2 + 1 dimensional SOS surfaces above a wall: slow mixing induced by entropic repulsion. Ann. Probab. 42(4), 1516–1589 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caputo, P., Lubetzky, E., Martinelli, F., Sly, A., Toninelli, F.L.: Scaling limit and cube-root fluctuations in SOS surfaces above a wall. J. Eur. Math. Soc. (JEMS) (to appear)

  9. Caputo P., Lubetzky E., Martinelli F., Sly A., Toninelli F.L.: The shape of the (2 + 1)-dimensional SOS surface above a wall. C. R. Math. Acad. Sci. Paris 350, 703–706 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chui S.T., Weeks J.D.: Phase transition in the two-dimensional Coulomb gas, and the interfacial roughening transition. Phys. Rev. B 14(11), 4978–4982 (1976)

    Article  ADS  Google Scholar 

  11. Dobrushin, R., Kotecký, R., Shlosman, S.: Wulff construction. A global shape from local interaction. In: Translations of Mathematical Monographs, vol. 104. American Mathematical Society, Providence (1992)

  12. Fortuin C.M., Kasteleyn P.W., Ginibre J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22, 89–103 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fröhlich J., Spencer T.: Kosterlitz–Thouless transition in the two-dimensional plane rotator and Coulomb gas. Phys. Rev. Lett. 46(15), 1006–1009 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  14. Fröhlich J., Spencer T.: The Kosterlitz–Thouless transition in two-dimensional abelian spin systems and the Coulomb gas. Commun. Math. Phys. 81(4), 527–602 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  15. Fröhlich J., Spencer T.: The Berežinskiĭ–Kosterlitz–Thouless transition (energy-entropy arguments and renormalization in defect gases), Scaling and self-similarity in physics. Progr. Phys. 7, 29–138 (1983)

    Google Scholar 

  16. Gallavotti, G., Martin-Löf, A., Miracle-Solé, S.: Some problems connected with the description of coexisting phases at low temperatures in the Ising model. In: Lenard, A. (ed.) Statistical Mechanics and Mathematical Problems, Lecture Notes in Physics, vol. 20, pp. 162–204. Springer, Berlin (1973)

  17. Kuperberg G.: Another proof of the alternating-sign matrix conjecture. Internat. Math. Res. Not. 3, 139–150 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lawler, G.F.: Intersections of random walks. In: Probability and its Applications, p. 219. Birkhäuser Boston Inc., Boston (1991)

  19. Lawler, G.F., Limic, V.: Random walk: a modern introduction. In: Cambridge Studies in Advanced Mathematics, vol. 123. Cambridge University Press, Cambridge (2010), MR2677157 (2012a:60132)

  20. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University Press, Cambridge (2016). http://mypage.iu.edu/~rdlyons/prbtree/book (To appear)

  21. Peled, R.: High-dimensional lipschitz functions are typically flat. Ann. Probab. (to appear)

  22. Sinaĭ, Ya.G.: Theory of phase transitions: rigorous results. In: International Series in Natural Philosophy, vol. 108. Pergamon Press, Oxford (1982)

  23. Soardi P.M.: Potential Theory on Infinite Networks. Springer, Berlin (1994)

    MATH  Google Scholar 

  24. Swendsen R.H.: Monte Carlo study of the Coulomb gas and the Villain XY model in the discrete Gaussian roughening representation. Phys. Rev. B 18(1), 492 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  25. Villain J.: Theory of one-and two-dimensional magnets with an easy magnetization plane. II. The planar, classical, two-dimensional magnet. J. Physique 36(6), 581–590 (1975)

    Article  Google Scholar 

  26. Weeks, J.D.: The roughening transition. Riste, T.(ed.) Ordering in Strongly Fluctuating Condensed Matter Systems, vol. 474, pp. 293–317. Springer, Berlin (1980)

  27. Weeks J.D., Gilmer G.H.: Dynamics of crystal growth. Adv. Chem. Phys. 40(489), 157–227 (1979)

    Google Scholar 

  28. Zeilberger, D.: Proof of the alternating sign matrix conjecture. The Foata Festschrift. Electron. J. Combin. 3(2), (1996) Research Paper 13, approx. 84 pp. (electronic)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Martinelli.

Additional information

Communicated by F. Toninelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubetzky, E., Martinelli, F. & Sly, A. Harmonic Pinnacles in the Discrete Gaussian Model. Commun. Math. Phys. 344, 673–717 (2016). https://doi.org/10.1007/s00220-016-2628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2628-5

Keywords

Navigation