Skip to main content
Log in

Zero Hausdorff Dimension Spectrum for the Almost Mathieu Operator

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the almost Mathieu operator at critical coupling. We prove that there exists a dense \({G_\delta}\) set of frequencies for which the spectrum is of zero Hausdorff dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila A., Jitomirskaya S.: The Ten Martini problem. Ann. Math. (2) 170(1), 303–342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avron J., van Mouche P., Simon B.: On the measure of the spectrum for the almost Mathieu operator. Commun. Math. Phys. 132, 103–118 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bell J., Stinchcombe R.B.: Hierarchical band clustering and fractal spectra in incommensurate systems. J. Phys. A 20, L739–L744 (1987)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. In: Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

  5. Chambers W.: Linear network model for magnetic breakdown in two dimensions. Phys. Rev. A 140, 135–143 (1965)

    Article  ADS  Google Scholar 

  6. Choi M.D., Elliot G.A., Yui N.: Gauss polynomials and the rotation algebra. Invent. Math. 99, 225–246 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Falconer K.J.: The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  8. Geisel T., Ketzmerick R., Petshel G.: New class of level statistics in quantum systems with unbounded diffusion. Phys. Rev. Lett. 66, 1651–1654 (1991)

    Article  ADS  Google Scholar 

  9. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn. Oxford University Press, Oxford (1979)

  10. Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l’équation de Harper (avec application à l’équation de Schrdinger avec champ magnétique). Mém. Soc. Math. Fr. (N.S.) 34, 113 pp. (1988)

  11. Hofstadter D.R.: Energy levels and wave functions of Bloch electrons in a rational or irrational magnetic field. Phys. Rev. B. 14, 2239–2249 (1976)

    Article  ADS  Google Scholar 

  12. Jitomirskaya, S.Ya.: Almost everything about the almost Mathieu operator. II. In: XIth International Congress of Mathematical Physics (Paris, 1994), pp. 373–382. International Press, Cambridge (1995)

  13. Last Y.: On the measure of gaps and spectra for discrete 1D Schrödinger operators. Commun. Math. Phys. 149, 347–360 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Last Y.: Zero measure spectrum for the almost Mathieu operator. Commun. Math. Phys. 164, 421–432 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Last, Y.: Almost everything about the almost Mathieu operator. I. In: XIth International Congress of Mathematical Physics (Paris, 1994), pp. 366–372. International Press, Cambridge (1995)

  16. Last, Y.: Spectral theory of Sturm–Liouville operators on infinite intervals: a review of recent developments. In: Amrein, W.O., Hinz, A.M., Pearson, D.B. (eds.) Sturm–Liouville Theory: Past and Present, pp. 99–120. Birkhäuser, Basel (2005)

  17. Last Y., Wilkinson M.: A sum rule for the dispersion relations of the rational Harper’s equation. J. Phys. A 25, 6123–6133 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. van Mouche P.M.H.: The coexistence problem for the discrete Mathieu operator. Commun. Math. Phys. 122, 23–34 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Surace S.: Positive Lyapunov exponent for a class of ergodic Schrödinger operators. Commun. Math. Phys. 162, 529–537 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Tang C., Kohmoto M.: Global scaling properties of the spectrum for a quasiperiodic Schrödinger equation. Phys. Rev. B 34, 2041–2044 (1986)

    Article  ADS  Google Scholar 

  21. Wilkinson M., Austin E.J.: Spectral dimension and dynamics for Harper’s equation. Phys. Rev. B 50, 1420–1430 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mira Shamis.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Last, Y., Shamis, M. Zero Hausdorff Dimension Spectrum for the Almost Mathieu Operator. Commun. Math. Phys. 348, 729–750 (2016). https://doi.org/10.1007/s00220-016-2620-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2620-0

Keywords

Navigation