Skip to main content
Log in

Exponential Relaxation to Equilibrium for a One-Dimensional Focusing Non-Linear Schrödinger Equation with Noise

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We construct generalized grand-canonical- and canonical Gibbs measures for a Hamiltonian system described in terms of a complex scalar field that is defined on a circle and satisfies a nonlinear Schrödinger equation with a focusing nonlinearity of order p < 6. Key properties of these Gibbs measures, in particular absence of “phase transitions” and regularity properties of field samples, are established. We then study a time evolution of this system given by the Hamiltonian evolution perturbed by a stochastic noise term that mimics effects of coupling the system to a heat bath at some fixed temperature. The noise is of Ornstein–Uhlenbeck type for the Fourier modes of the field, with the strength of the noise decaying to zero, as the frequency of the mode tends to ∞. We prove exponential approach of the state of the system to a grand-canonical Gibbs measure at a temperature and “chemical potential” determined by the stochastic noise term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari Z., Nier F.: Mean field limits for bosons and infinite dimensional phase-space analysis. Ann. Inst. H. Poincare 9, 1503–1574 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ammari, Z. and Nier, F.:Mean field propagation of infinite dimensional Wigner measures with a singular two-body interaction potential (2012) (preprint)

  3. Bourgain, J.: Nonlinear Schrödinger equations. In: Hyperbolic equations and frequency interactions, vol. 5, IAS/Park CityMathematics Series, Caffarelli, L., and E,W., AMS Publ., Institute for Advanced Study, 1999, p.3.

  4. Brydges D.C., Slade G.: Statistical mechanics of the 2-dimensional focusing nonlinear Schrödinger equation. Commun. Math. Phys. 182, 485–504 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Da Prato G., Debussche A.: Strong solutions to the stochastic quantization equations. Ann. Probab. 31(4), 1900–1916 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jona-Lasinio G., Mitter P.K.: On the stochastic quantization of field theory. Commun. Math. Phys. 101, 409–436 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Federbush P.: Partially alternate derivation of a result of Nelson. J. Math. Phys. 10, 50–52 (1969)

    Article  ADS  MATH  Google Scholar 

  8. Glimm, J., Jaffe, A.: Quantum Physics–A Functional Integral Point of View, 2nd ed.,. Springer, Berlin-Heidelberg-New York (1987)

  9. Kamvissis, S., McLaughlin, K.D.T-R., Miller, P.D.: Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. Annals of Mathematics Studies, Princeton University Press, Princeton NJ (2003)

  10. Kuksin S., Shirikyan A.: A coupling approach to randomly forced nonlinear PDE’s. I. Commun. Math. Phys. 221, 351–366 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kuksin S., Shirikyan A.: Stochastic dissipative PDE’s and Gibbs measures. Commun. Math Phys. 213, 291–330 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lebowitz J.L., Mounaix Ph., Wang W.M.: Approach to equilibrium for the stochastic NLS. Commun. Math. Phys. 321, 69–84 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Lebowitz J.L., Rose H.A., Speer E.R.: Statistical mechanics of the nonlinear Schrödinger equation. J. Stat. Phys. 50, 657–687 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lebowitz J.L., Rose H.A., Speer E.R.: Statistical mechanics of the nonlinear Schrödinger equation II. Mean field approximation. J. Stat. Phys. 54, 17–56 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. McKean H.P., Vaninsky K.L.: Statistical mechanics of nonlinear wave equations. In: Trends and Perspectives in Applied Mathematics (dedicated to Fritz John), Applied Mathematical Sciences, vol. 100, pp. 239–264 (1994)

  16. McKean H.P.: Statistical mechanics of nonlinear wave equations (4): Cubic Schrödinger. Commun. Math. Phys. 160, 479–491 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mounaix Ph., Collet P., Lebowitz J.L.: Nonequilibrium stationary state of a truncated stochastic nonlinear Schrödinger equation: Formulation and mean-field approximation. Phys. Rev. E 81, 031109 (2010)

    Article  ADS  Google Scholar 

  18. Parthasarathy, K.R.: Probability measures on metric spaces. AMS. Providence (2005)

  19. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation, vol. 139. Applied Mathematical Sciences. Springer, New York (1989)

  20. Zygmund A.: Trigonometric Series. Camberidge Univ. Press, Cambridge (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel Lebowitz.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlen, E.A., Fröhlich, J. & Lebowitz, J. Exponential Relaxation to Equilibrium for a One-Dimensional Focusing Non-Linear Schrödinger Equation with Noise. Commun. Math. Phys. 342, 303–332 (2016). https://doi.org/10.1007/s00220-015-2511-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2511-9

Keywords

Navigation