Skip to main content
Log in

Infinite Index Subfactors and the GICAR Categories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Given a II1-subfactor \({A \subset B}\) of arbitrary index, we show that the rectangular GICAR category, also called the rectangular planar rook category, faithfully embeds as AA bimodule maps among the bimodules \({\bigotimes_A^n L^2(B)}\). As a corollary, we get a lower bound on the dimension of the centralizer algebras \({A_{0}^{'}\,\cap\,A_{2n}}\) for infinite index subfactors, and we also get that \({A_{0}^{'}\,\cap\,A_{2n}}\) is nonabelian for \({n \geq 2}\), where \({(A_n)_{n \geq 0}}\) is the Jones tower for \({A_0 = A \subset B = A_1}\). We also show that the annular GICAR/planar rook category acts as maps amongst the A-central vectors in \({\bigotimes_A^n L^2(B)}\), although this action may be degenerate. We prove these results in more generality using bimodules. The embedding of the GICAR category builds on work of Connes and Evans, who originally found GICAR algebras inside Temperley–Lieb algebras with finite modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartels, A., Douglas, C.L., Henriques, A.: Dualizability and index of subfactors. Quantum Topol. 5(3) (2014). arXiv:1110.5671

  2. Bigelow, S.: A diagrammatic Alexander invariant of tangles. J. Knot Theory Ramif. 21(8), 1250081, 9 (2012). doi:10.1142/S0218216512500812. arXiv:1203.5457

  3. Bigelow, S., Ramos, E., Yi, R.: The Alexander and Jones polynomials through representations of rook algebras. J. Knot Theory Ramif. 21(12), 1250114, 18 (2012). doi:10.1142/S0218216512501143. arXiv:1110.0538

  4. Burns, M.: Subfactors, planar algebras, and rotations, Ph.D. thesis, University of California, Berkeley (2003). arXiv:1111.1362

  5. Connes, A., Evans, D.E.: Embedding of U(1)-current algebras in noncommutative algebras of classical statistical mechanics. Commun. Math. Phys. 121(3), 507–525 (1989)

  6. Connes, A.: On the spatial theory of von Neumann algebras. J. Funct. Anal. 35(2), 153–164 (1980)

  7. Davidson K.R.: C *-algebras by example. In: Fields Institute Monographs, vol. 6. American Mathematical Society, Providence (1996)

    Google Scholar 

  8. Enock, M., Nest, R.: Irreducible inclusions of factors, multiplicative unitaries, and Kac algebras. J. Funct. Anal. 137(2), 466–543 (1996)

  9. Flath, D., Halverson, T., Herbig, K.: The planar rook algebra and Pascal’s triangle. Enseign. Math. (2) 55(1–2), 77–92 (2009). arXiv:0806.3960

  10. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

  11. Graham, J.J., Lehrer, G.I.: The representation theory of affine Temperley–Lieb algebras. Enseign. Math. (2) 44(3–4), 173–218 (1998), 173–218 (1998)

  12. Haagerup, U.: Operator-valued weights in von Neumann algebras. I. J. Funct. Anal. 32(2), 175–206 (1979)

  13. Herman R.H., Ocneanu A.: Index theory and Galois theory for infinite index inclusions of factors. C. R. Acad. Sci. Paris Sér. I Math. 309(17), 923–927 (1989)

    MathSciNet  Google Scholar 

  14. Izumi M., Longo R., Popa S.: A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras. J. Funct. Anal. 155(1), 25–63 (1998)

    Article  MathSciNet  Google Scholar 

  15. Jones V.F.R.: Index for subfactors. Invent. Math. 72(1), 1–25 (1983). doi:10.1007/BF01389127

    Article  MathSciNet  ADS  Google Scholar 

  16. Jones V.F.R.: Planar algebras I (1999). arXiv:math/9909027

  17. Jones, V.F.R.: The annular structure of subfactors. In: Essays on Geometry and Related Topics, vol. 1, 2; Monogr. Enseign. Math., vol. 38, pp. 401–463. Enseignement Math., Geneva (2001)

  18. Jones, V.F.R.: Von Neumann algebras. http://math.berkeley.edu/~vfr/MATH20909/VonNeumann2009.pdf (2010). Accessed 13 June 2015

  19. Jones, V.F.R.: Jones’ notes on planar algebras. http://math.berkeley.edu/~vfr/VANDERBILT/pl21.pdf (2011). Accessed 13 June 2015

  20. Kauffman, L.H.: State models and the Jones polynomial. Topology 26(3), 395–407 (1987). doi:10.1016/0040-9383(87)90009-7

  21. Lieb, E.H.: Residual entropy of square ice. Phys. Rev. 162(1), 162–172 (1967)

  22. Ocneanu, A.: Quantized groups, string algebras and Galois theory for algebras. In: Operator Algebras and Applications, vol. 2. London Math. Soc. Lecture Note Ser., vol. 136, pp. 119–172. Cambridge Univ. Press, Cambridge (1988)

  23. Ocneanu, A.: Chirality for operator algebras. In: Subfactors (Kyuzeso, 1993), pp. 39–63. World Sci. Publ., River Edge (1994)

  24. Penneys D.: A cyclic approach to the annular Temperley–Lieb category. J. Knot Theory Ramif. 21(6), 1250049, 40 (2012). doi:10.1142/S0218216511010012. arXiv:0912.1320

  25. Penneys D.: A planar calculus for infinite index subfactors. Commun. Math. Phys. 319(3), 595–648 (2013). doi:10.1007/s00220-012-1627-4. arXiv:1110.3504

  26. Popa, S.: Correspondences, INCREST Preprint (1986)

  27. Popa, S.: Markov traces on universal Jones algebras and subfactors of finite index. Invent. Math. 111(2), 375–405 (1993). doi:10.1007/BF01231293

  28. Popa S.: An axiomatization of the lattice of higher relative commutants of a subfactor. Invent. Math. 120(3), 427–445 (1995). doi:10.1007/BF01241137

    Article  MathSciNet  ADS  Google Scholar 

  29. Solomon L.: Representations of the rook monoid. J. Algebra 256(2), 309–342 (2002). doi:10.1016/S0021-8693(02)00004-2

    Article  MathSciNet  Google Scholar 

  30. Temperley H.N.V., Lieb E.H.: Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem. Proc. R. Soc. Lond. Ser. A 322(1549), 251–280 (1971)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Penneys.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, V.F.R., Penneys, D. Infinite Index Subfactors and the GICAR Categories. Commun. Math. Phys. 339, 729–768 (2015). https://doi.org/10.1007/s00220-015-2407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2407-8

Keywords

Navigation