Skip to main content
Log in

The Geodesic Ray Transform on Riemannian Surfaces with Conjugate Points

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the geodesic X-ray transform X on compact Riemannian surfaces with conjugate points. Regardless of the type of the conjugate points, we show that we cannot recover the singularities and, therefore, this transform is always unstable (ill-posed). We describe the microlocal kernel of X and relate it to the conjugate locus. We present numerical examples illustrating the cancellation of singularities. We also show that the attenuated X-ray transform is well posed if the attenuation is positive and there are no more than two conjugate points along each geodesic; but it is still ill-posed if there are three or more conjugate points. Those results follow from our analysis of the weighted X-ray transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d V.I.: Singularities of caustics and wave fronts, volume 62 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1990)

    Book  Google Scholar 

  2. Bao G., Zhang H.: Sensitivity analysis of an inverse problem for the wave equation with caustics. J. Am. Math. Soc. 27, 953–981 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Belishev M.I., Kurylev Y.V.: To the reconstruction of a Riemannian manifold via its spectral data (BC-method). Comm. Partial Differ. Equ. 17(5–6), 767–804 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bellassoued M., DosSantos Ferreira D.: Stability estimates for the anisotropic wave equation from the Dirichlet-to-Neumann map. Inverse Probl. Imaging 5(4), 745–773 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boman J., Quinto E.T.: Support theorems for real-analytic Radon transforms. Duke Math. J. 55(4), 943–948 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Croke C.B.: Rigidity and the distance between boundary points. J. Differ. Geom. 33(2), 445–464 (1991)

    MATH  MathSciNet  Google Scholar 

  7. Croke, C.B.: Rigidity theorems in Riemannian geometry. In: Geometric methods in inverse problems and PDE control, vol. 137 of IMA Vol. Math. Appl., pp. 47–72. Springer, New York (2004)

  8. Croke C.B., Dairbekov N.S., Sharafutdinov V.A.: Local boundary rigidity of a compact Riemannian manifold with curvature bounded above. Trans. Am. Math. Soc. 352(9), 3937–3956 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duistermaat J.J., Guillemin V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Frigyik B., Stefanov P., Uhlmann G.: The X-ray transform for a generic family of curves and weights. J. Geom. Anal. 18(1), 89–108 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gelfand I.M., Graev M.I., Shapiro Z.J.: Differential forms and integral geometry. Funkcional. Anal. I Priložen. 3(2), 24–40 (1969)

    Google Scholar 

  12. Golubitsky M., Guillemin V. (1973) Stable mappings and their singularities. Graduate Texts in Mathematics, vol. 14. Springer, New York (1973)

  13. Greenleaf A., Uhlmann G.: Nonlocal inversion formulas for the X-ray transform. Duke Math. J. 58(1), 205–240 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guillemin, V.: On some results of Gel’fand in integral geometry. In: Pseudodifferential operators and applications (Notre Dame, Ind., 1984), vol. 43 of Proc. Sympos. Pure Math., pp. 149–155. Amer. Math. Soc., Providence (1985)

  15. Guillemin, V., Sternberg, S.: Geometric asymptotics. American Mathematical Society, Providence, R.I., Mathematical Surveys, No. 14 (1977)

  16. Helgason, S.: The Radon transform, vol. 5 of Progress in Mathematics, 2nd edn. Birkhäuser Boston Inc., Boston (1999)

  17. Holman, S.: Microlocal analysis of the geodesic X-ray transform. private communication

  18. Hörmander, L.: The analysis of linear partial differential operators, III, vol. 274. Pseudodifferential operators. Springer, Berlin (1985)

  19. Hörmander, L.: The analysis of linear partial differential operators, IV, vol. 275. Fourier integral operators. Springer, Berlin (1985)

  20. Krishnan V.: On the inversion formulas of Pestov and Uhlmann for the geodesic ray transform. J. Inv. Ill-Posed Problems 18, 401–408 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Krishnan V.P.: A support theorem for the geodesic ray transform on functions. J. Fourier Anal. Appl. 15(4), 515–520 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Monard F.: Numerical implementation of two-dimensional geodesic X-ray transforms and their inversion. SIAM J. Imaging Sci. 7(2), 1335–1357 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  23. Montalto C.: Stable determination of a simple metric, a covector field and a potential from the hyperbolic dirichlet-to-neumann map. Commun. Partial Differ. Equ. 39(1), 120–145 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  24. Pestov, L., Uhlmann, G.: On characterization of the range and inversion formulas for the geodesic X-ray transform. Int. Math. Res. Not. (80), 4331–4347 (2004)

  25. Pestov L., Uhlmann G.: Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. of Math. (2) 161(2), 1093–1110 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Quinto, E.T.: Radon transforms satisfying the Bolker assumption. In: 75 years of Radon transform (Vienna, 1992), Conf. Proc. Lecture Notes Math. Phys., IV, pp. 263–270. Int. Press, Cambridge (1994)

  27. Sharafutdinov V.: Variations of Dirichlet-to-Neumann map and deformation boundary rigidity of simple 2-manifolds. J. Geom. Anal. 17(1), 147–187 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sharafutdinov V.A. (1994) Integral geometry of tensor fields. Inverse and Ill-posed Problems Series. VSP, Utrecht

  29. Stefanov P., Uhlmann G.: Rigidity for metrics with the same lengths of geodesics. Math. Res. Lett. 5(1-2), 83–96 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stefanov P., Uhlmann G.: Stability estimates for the hyperbolic Dirichlet to Neumann map in anisotropic media. J. Funct. Anal. 154(2), 330–358 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Stefanov P., Uhlmann G.: Stability estimates for the X-ray transform of tensor fields and boundary rigidity. Duke Math. J. 123(3), 445–467 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Stefanov P., Uhlmann G.: Boundary rigidity and stability for generic simple metrics. J. Am. Math. Soc. 18(4), 975–1003 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Stefanov P., Uhlmann G.: Stable determination of generic simple metrics from the hyperbolic Dirichlet-to-Neumann map. Int. Math. Res. Not. 17(17), 1047–1061 (2005)

    Article  MathSciNet  Google Scholar 

  34. Stefanov, P., Uhlmann, G.: Boundary and lens rigidity, tensor tomography and analytic microlocal analysis. In: Algebraic Analysis of Differential Equations. Springer (2008)

  35. Stefanov P., Uhlmann G.: Integral geometry of tensor fields on a class of non-simple Riemannian manifolds. Am. J. Math. 130(1), 239–268 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Stefanov P., Uhlmann G.: Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds. J. Differ. Geom. 82(2), 383–409 (2009)

    MATH  MathSciNet  Google Scholar 

  37. Stefanov P., Uhlmann G.: The geodesic X-ray transform with fold caustics. Anal. PDE 5(1-2), 219–260 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Taylor M.E.: Pseudodifferential operators, vol. 34 of Princeton Mathematical Series. Princeton University Press, Princeton (1981)

    Google Scholar 

  39. Uhlmann, G., Vasy, A.: The inverse problem for the local geodesic ray transform. arxiv:1210.2084

  40. Warner F.W.: The conjugate locus of a Riemannian manifold. Am. J. Math. 87, 575–604 (1965)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunther Uhlmann.

Additional information

Communicated by S. Zelditch

First author partly supported by NSF Grant No. 1265958.

Second author partly supported by a NSF Grant DMS-1301646.

Third author partly supported by NSF Grant No. 1265958 and a Simons Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monard, F., Stefanov, P. & Uhlmann, G. The Geodesic Ray Transform on Riemannian Surfaces with Conjugate Points. Commun. Math. Phys. 337, 1491–1513 (2015). https://doi.org/10.1007/s00220-015-2328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2328-6

Keywords

Navigation