Skip to main content
Log in

A Note on Colored HOMFLY Polynomials for Hyperbolic Knots from WZW Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the correspondence between Chern-Simons theories and Wess-Zumino-Witten models, we present the necessary tools to calculate colored HOMFLY polynomials for hyperbolic knots. For two-bridge hyperbolic knots we derive the colored HOMFLY invariants in terms of crossing matrices of the underlying Wess-Zumino-Witten model. Our analysis extends previous works by incorporating non-trivial multiplicities for the primaries appearing in the crossing matrices, so as to describe colorings of HOMFLY invariants beyond the totally symmetric or anti-symmetric representations of SU(N). The crossing matrices directly relate to 6j-symbols of the quantum group \({\mathcal{U}_{q}su(N)}\). We present powerful methods to calculate such quantum 6j-symbols for general N. This allows us to determine previously unknown colored HOMFLY polynomials for two-bridge hyperbolic knots. We give explicitly the HOMFLY polynomials colored by the representation {2, 1} for two-bridge hyperbolic knots with up to eight crossings. Yet, the scope of application of our techniques goes beyond knot theory; e.g., our findings can be used to study correlators in Wess-Zumino-Witten conformal field theories or—in the limit to classical groups—to determine color factors for Yang Mills amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Labastida, J.: Chern-Simons gauge theory: ten years after. AIP Conf. Proc 484, 1 (1999). arXiv:hep-th/9905057

  3. Mariño M.: Chern-Simons Theory, Matrix Models and Topological Strings, International Series of Monographs on Physics, vol. 131. The Clarendon Press Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  4. Mariño, M.: Chern-Simons theory and topological strings. Rev. Mod. Phys. 77, 675–720 (2005). arXiv:hep-th/0406005

  5. Gukov, S., Saberi, I.: Lectures on knot homology and quantum curves. AMS Contemp. Math. 613, (2014). arXiv:1211.6075 [hep-th]

  6. Witten, E.: Chern-Simons gauge theory as a string theory. Prog. Math. 133, 637–678 (1995). arXiv:hep-th/9207094

  7. Gopakumar, R., Vafa, C.: On the gauge theory / geometry correspondence. Adv. Theor. Math. Phys. 3, 1415–1443 (1999). arXiv:hep-th/9811131

  8. Labastida, J., Mariño, M.: Polynomial invariants for torus knots and topological strings. Commun. Math. Phys. 217, 423–449, (2001). arXiv:hep-th/0004196

  9. Labastida, J., Mariño, M., Vafa, C.: Knots, links and branes at large N. JHEP 0011, 007 (2000). arXiv:hep-th/0010102

  10. Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B577, 419–438 (2000). arXiv:hep-th/9912123

  11. Mariño, M., Vafa, C.: Framed knots at large N. Contemp. Math. 310, 185–204 (2002). arXiv:hep-th/0108064

  12. Brini, A., Eynard, B., Mariño, M.: Torus knots and mirror symmetry. Ann. Henri Poincare 13, 1873–1910 (2012). arXiv:1105.2012 [hep-th]

  13. Diaconescu, D., Shende, V., Vafa, C.: Large N duality, lagrangian cycles, and algebraic knots. Commun. Math. Phys. 319, 813–863 (2013). arXiv:1111.6533 [hep-th]

  14. Jockers, H., Klemm, A., Soroush, M.: Torus knots and the topological vertex. Lett. Math. Phys. 104, 953–989 (2014). arXiv:1212.0321 [hep-th]

  15. Ng, L.: Framed knot contact homology. Duke Math. J. 141, 365–406 (2008). arXiv:math/0407071

  16. Ng, L.: A topological introduction to knot contact homology. In: Contact and Symplectic Topology, Bolyai Society Mathematical Studies vol. 26, pp 485–530, (2014). arXiv:1210.4803 [math.GT]

  17. Aganagic, M., Vafa, C.: Large N duality, mirror symmetry, and a Q-deformed A-polynomial for knots, (2012). arXiv:1204.4709 [hep-th]

  18. Aganagic, M., Ekholm, T., Ng, L., Vafa, C.: Topological strings, D-model, and knot contact homology. Adv. Theor. Math. Phys. 18(4), 827–956 (2014). arXiv:1304.5778 [hep-th]

  19. Gu, J., Jockers, H., Klemm, A., Soroush, M.: Knot nvariants from topological recursion on augmentation varieties, (2014). arXiv:1401.5095 [hep-th]

  20. Rama Devi, P., Govindarajan, T., Kaul, R.: Three-dimensional Chern-Simons theory as a theory of knots and links. 3. Compact semisimple group. Nucl. Phys. B402, 548–566 (1993). arXiv:hep-th/9212110

  21. Zodinmawia, Ramadevi, P.: SU(N) quantum Racah coefficients and non-torus links. Nucl. Phys. B870, 205–242 (2013). arXiv:1107.3918 [hep-th]

  22. Nawata, S., Ramadevi, P., Zodinmawia, Sun, X.: Super-A-polynomials for Twist knots. JHEP 1211, 157 (2012). arXiv:1209.1409 [hep-th]

  23. Itoyama, H., Mironov, A., Morozov, A., Morozov, A.: Eigenvalue hypothesis for Racah matrices and HOMFLY polynomials for 3-strand knots in any symmetric and antisymmetric representations. Int. J. Mod. Phys. A28, 1340009 (2013). arXiv:1209.6304 [math-ph]

  24. Itoyama, H., Mironov, A., Morozov, A., Morozov, A.: HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations. JHEP 1207, 131 (2012). arXiv:1203.5978 [hep-th]

  25. Kawagoe, K.: On the formulae for the colored HOMFLY polynomials (2012). arXiv:1210.7574 [math.GT]

  26. Nawata, S., Ramadevi, P., Zodinmawia: Colored HOMFLY polynomials from Chern-Simons theory. J. Knot Theor. 22, 1350078 (2013). arXiv:1302.5144 [hep-th]

  27. Anokhina, A., Mironov, A., Morozov, A., Morozov, A.: Knot polynomials in the first non-symmetric representation. Nucl. Phys. B882, 171–194 (2014). arXiv:1211.6375 [hep-th]

  28. Anokhina, A., Morozov, A.: Cabling procedure for the colored HOMFLY polynomials. Teor. Mat. Fiz. 178, 3–68 (2014). arXiv:1307.2216 [hep-th]

  29. Ramadevi, P., Sarkar, T.: On link invariants and topological string amplitudes. Nucl. Phys. B600, 487–511 (2001). arXiv:hep-th/0009188

  30. Borhade, P., Ramadevi, P., Sarkar, T.: U(N) framed links, three manifold invariants, and topological strings. Nucl. Phys. B678, 656–681 (2004). arXiv:hep-th/0306283

  31. Butler P.: Point Group Symmetry Applications: Methods and Tables. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  32. Haase R.W., Dirl R.: The symmetric group: algebraic formulas for some S f 6j symbols and \({S_f\supset S_{f_1}\times S_{f_2} 3jm}\) symbols. J. Math. Phys. 27, 900–913 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Cvitanović P.: Group Theory. Princeton University Press, Princeton, NJ (2008)

    Book  MATH  Google Scholar 

  34. Elvang, H., Cvitanović, P., Kennedy, A.D.: Diagrammatic young projection operators for U(n), (2003). arXiv:hep-th/0307186

  35. Behrend, R.E., Pearce, P.A., Petkova, V.B., Zuber, J.-B.: Boundary conditions in rational conformal field theories. Nucl. Phys. B570, 525–589 (2000). arXiv:hep-th/9908036

  36. Felder, G., Frohlich, J., Fuchs, J., Schweigert, C.: The geometry of WZW branes. J. Geom. Phys. 34, 162–190 (2000). arXiv:hep-th/9909030

  37. Felder, G., Frohlich, J., Fuchs, J., Schweigert, C.: Correlation functions and boundary conditions in RCFT and three-dimensional topology. Compos. Math. 131, 189–237 (2002). arXiv:hep-th/9912239

  38. Wigner E.P.: Group Theory and Its Applications to the Quantum Mechanics of Atomic Spectra. Academic Press, New York (1959)

    Google Scholar 

  39. Gorshkov, A.V., Hermele, M., Gurarie, V., Xu, C., Julienne, P.S., Ye, J., Zoller, P., Demler, E., Lukin, M.D., Rey, A.M.: Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys. 6, 289–295 (2010). arXiv:0905.2610 [cond-mat]

  40. Moore G.W., Seiberg N.: Classical and quantum conformal field theory. Commun. Math. Phys. 123, 177 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Bar-Natan, D., Morrison, S., et al.: The knot atlas

  42. Nawata, S., Ramadevi, P., Zodinmawia: Multiplicity-free quantum 6j-symbols for \({U_q(\mathfrak{sl}_N)}\). Lett. Math. Phys. 103, 1389–1398 (2013). arXiv:1302.5143 [hep-th]

  43. Moore G.W., Seiberg, N.: Lectures on RCFT. In: Green, M.B., et al. (eds.) Superstrings ’89: Proceedings of the Trieste Spring School, pp. 1–129. World Scientific Publishing Co. Pte. Ltd., (1990)

  44. Alvarez-Gaume L., Gomez C., Sierra G.: Duality and quantum groups. Nucl. Phys. B 330, 347 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras. I, II. J. Am. Math. Soc. 6, 905–947, (1993, 949–1011)

  46. Kazhdan D., Lusztig G.: Tensor structures arising from affine Lie algebras. III. J. Am. Math. Soc. 7, 335–381 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  47. Kazhdan D., Lusztig G.: Tensor structures arising from affine Lie algebras. IV. J. Am. Math. Soc. 7, 383–453 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  48. Finkelberg M.: An equivalence of fusion categories. Geom. Funct. Anal. 6, 249–267 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  49. Lienert C.R., Butler P.H.: Racah-Wigner algebra for q-deformed algebras. J. Phys. A Math. Gen. 25, 1223 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Pan F.: Racah coefficients of quantum group Uq (n). J. Phys. A Math. Gen. 26, 4621 (1993)

    Article  ADS  MATH  Google Scholar 

  51. Haase, R.W.: The symmetric group and the unitary group: an application of group-subgroup transformation theory. Ph.D. thesis, University of Canterbury. Physics (1983)

  52. Butler P., King R.: Symmetrized kronecker products of group representations. Can. J. Math 26, 328–339 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  53. Searle, B.: Calculation of 6j symbols. Ph.D. thesis, University of Canterbury. Physics (1988)

  54. Kaul, R., Govindarajan, T.: Three-dimensional Chern-Simons theory as a theory of knots and links. Nucl. Phys. B380, 293–336 (1992). arXiv:hep-th/9111063

  55. Kaul R., Govindarajan T.: Three-dimensional Chern-Simons theory as a theory of knots and links. 2. Multicolored links. Nucl. Phys. B393, 392–412 (1993)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Jockers.

Additional information

Communicated by H. Ooguri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Jockers, H. A Note on Colored HOMFLY Polynomials for Hyperbolic Knots from WZW Models. Commun. Math. Phys. 338, 393–456 (2015). https://doi.org/10.1007/s00220-015-2322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2322-z

Keywords

Navigation