Skip to main content
Log in

Equilibration of Small and Large Subsystems in Field Theories and Matrix Models

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It has been recently shown that small subsystems of finite quantum systems generically equilibrate. We extend these results to infinite-dimensional Hilbert spaces of field theories and matrix models. We consider a quench setup, where initial states are chosen from a microcanonical ensemble of finite energy in free theory, and then evolve with an arbitrary non-perturbative Hamiltonian. Given a dynamical assumption on the expectation value of particle number density, we prove that small subsystems reach equilibrium at the level of quantum wave-function, and with respect to all observables. The picture that emerges is that at higher energies, larger subsystems can reach equilibrium. For bosonic fields on a lattice, in the limit of large number of bosons per site, all subsystems smaller than half equilibrate. In the Hermitian matrix model, by contrast, this occurs in the limit of large energy per matrix element, emphasizing the importance of the O(N 2) energy scale for the fast scrambling conjecture. Applying our techniques to continuum field theories on compact spaces, we show that the density matrix of small momentum-space observables equilibrate. Finally, we discuss the connection with scrambling, and provide a sufficient condition for a time-independent Hamiltonian to be a scrambler in terms of the entanglement entropy of its energy eigenstates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berges, J.: Introduction to nonequilibrium quantum field theory. AIP Conf. Proc. 739, 3–62 (2005). arXiv:hep-ph/0409233

  2. Linden, N., Popescu, S., Short, A.J., Winter, A.: Quantum mechanical evolution towards thermal equilibrium. Phys. Rev. E 79, 061103 (2009). arXiv:0812.2385

  3. Reimann P.: Canonical thermalization. New J. Phys. 12(5), 055027 (2010)

    Article  ADS  Google Scholar 

  4. Short, A.J.: Equilibration of quantum systems and subsystems. New J. Phys. 13, 053009+ (2011)

  5. Reimann P., Kastner M.: Equilibration of isolated macroscopic quantum systems. New J. Phys. 14(4), 043020 (2012)

    Article  ADS  Google Scholar 

  6. Barthel T., Schollwöck U.: Dephasing and the steady state in quantum many-particle systems. Phys. Rev. Lett. 100(10), 100601 (2008)

    Article  ADS  Google Scholar 

  7. Sekino, Y., Susskind, L.: Fast Scramblers. JHEP 0810, 065 (2008). arXiv:0808.2096

  8. Lashkari, N., Stanford, D., Hastings, M., Osborne, T., Hayden, P.: Towards the fast scrambling conjecture. JHEP 1304, 022 (2013). arXiv:1111.6580

  9. Brézin E., Itzykson C., Parisi G., Zuber J.-B.: Planar diagrams. Commun. Math. Phys. 59(1), 35–51 (1978)

    Article  ADS  MATH  Google Scholar 

  10. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  11. Cramer M., Dawson C.M., Eisert J., Osborne T.J.: Exact relaxation in a class of nonequilibrium quantum lattice systems. Phys. Rev. Lett. 100, 030602 (2008)

    Article  ADS  Google Scholar 

  12. Bañuls M.C., Cirac J.I., Hastings M.B.: Strong and weak thermalization of infinite nonintegrable quantum systems. Phys. Rev. Lett. 106, 050405 (2011)

    Article  ADS  Google Scholar 

  13. Rigol M.: Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103(10), 100403 (2009)

    Article  ADS  Google Scholar 

  14. Goldstein S., Lebowitz J.L., Mastrodonato C., Tumulka R., Zanghi N.: Approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E 81, 011109 (2010)

    Article  ADS  Google Scholar 

  15. Short, A.J., Farrelly, T.C.: Quantum equilibration in finite time. New J. Phys. 14, 013063+ (2012)

  16. Ohliger, M., Nesme, V., Gross, D., Liu, Y.-K., Eisert J.: Continuous-variable quantum compressed sensing (2011). arXiv:1111.0853

  17. Taylor W.: M (atrix) theory: Matrix quantum mechanics as a fundamental theory. Rev. Modern Phys. 73(2), 419 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Berenstein, D.: A Toy model for the AdS/CFT correspondence. JHEP 0407, 018 (2004). hep-th/0403110

  19. Balasubramanian, V., de Boer, J., Jejjala, V., Simon, J.: The Library of Babel: On the origin of gravitational thermodynamics. JHEP 0512, 006 (2005). hep-th/0508023

  20. Eisert J., Cramer M., Plenio M.B.: Colloquium: area laws for the entanglement entropy. Rev. Modern Phys. 82(1), 277 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Alba V., Fagotti M., Calabrese P.: Entanglement entropy of excited states. J. Stat. Mech. Theory Exp. 2009(10), P10020 (2009)

    Article  MathSciNet  Google Scholar 

  22. Requardt, M.: Entanglement-entropy for groundstates, low-lying and highly excited eigenstates of general (lattice) hamiltonians (2006). arXiv:hep-th/0605142

  23. Lashkari, N., Simon, J.: From state distinguishability to effective bulk locality. JHEP 1404, 044 (2014). arXiv:1402.4829

  24. Milman V.D., Schechtman G.: Asymptotic Theory of Finite Dimensional Normed Spaces: Isoperimetric Inequalities in Riemannian Manifolds, vol. 1200. Springer, Berlin (1986)

    Google Scholar 

  25. van Dam, W., Hayden, P.: Renyi-entropic bounds on quantum communication (2002). arXiv:quant-ph/0204093

  26. Hardy G.H., Ramanujan S.: Asymptotic formulaæ in combinatory analysis. Proc. Lond. Math. Soc. 2(1), 75–115 (1918)

    Article  MathSciNet  Google Scholar 

  27. Knessl C., Keller J.B.: Partition asymptotics from recursion equations. SIAM J. Appl. Math. 50(2), 323–338 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Agnarsson, G.: On the sylvester denumerants for general restricted partitions. Congressus numerantium, pp. 49–60 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Lashkari.

Additional information

Communicated by A. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkari, N. Equilibration of Small and Large Subsystems in Field Theories and Matrix Models. Commun. Math. Phys. 333, 1199–1224 (2015). https://doi.org/10.1007/s00220-014-2263-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2263-y

Keywords

Navigation