Skip to main content
Log in

Stability Issues in the Quasineutral Limit of the One-Dimensional Vlasov–Poisson Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

This work is concerned with the quasineutral limit of the one-dimensional Vlasov–Poisson equation, for initial data close to stationary homogeneous profiles. Our objective is threefold: first, we provide a proof of the fact that the formal limit does not hold for homogeneous profiles that satisfy the Penrose instability criterion. Second, we prove on the other hand that the limit is true for homogeneous profiles that satisfy some monotonicity condition, together with a symmetry condition. We handle the case of well-prepared as well as ill-prepared data. Last, we study a stationary boundary-value problem for the formal limit, the so-called quasineutral Vlasov equation. We show the existence of numerous stationary states, with a lot of freedom in the construction (compared to that of BGK waves for Vlasov–Poisson): this illustrates the degeneracy of the limit equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: On conditions for non-linear stability of plane stationary curvilinear flows of an ideal fluid. Dokl. Akad. Nauk SSSR 162, 975–978 (1965)

    MathSciNet  Google Scholar 

  2. Arnold V.I.: An a priori estimate in the theory of hydrodynamic stability. Izv. Vysš. Učebn. Zaved. Matematika 1966((54)5), 3–5 (1966)

    Google Scholar 

  3. Arsenev, A.A.: Existence in the large of a weak solution of Vlasov’s system of equations. Ž. Vyčisl. Mat. i Mat. Fiz. 15, 136–147, 276 (1975)

  4. Bardos, C.: About a variant of the 1d Vlasov equation, dubbed “Vlasov–Dirac–Benney” Equation. Séminaire Laurent Schwartz—EDP et applications 15, 21 (2012–2013)

  5. Bardos C., Besse N.: The Cauchy problem for the Vlasov–Dirac–Benney equation and related issued in fluid mechanics and semi-classical limits. Kinet. Relat. Models 6(4), 893–917 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bardos C., Nouri A.: A Vlasov equation with Dirac potential used in fusion plasmas. J. Math. Phys. 53(11), 115621–115621 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  7. Batt J., Rein G.: A rigorous stability result for the Vlasov–Poisson system in three dimensions. Ann. Math. Pure Appl. 4(164), 133–154 (1993)

    Article  MathSciNet  Google Scholar 

  8. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping: paraproducts and Gevrey regularity. ArXiv preprint arXiv:1311.2870 (2013)

  9. Ben Abdallah N., Dolbeault J.: Relative entropies for kinetic equations in bounded domains (irreversibility, stationary solutions, uniqueness). Arch. Ration. Mech. Anal. 168(4), 253–298 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Springer, Berlin (1976)

  11. Bernstein I.B., Greene J.M., Kruskal M.D.: Exact non-linear plasma oscillations. Phys. Rev. 2(108), 546–550 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  12. Besse N.: On the waterbag continuum. Arch. Ration. Mech. Anal. 199(2), 453–491 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bossy, M., Fontbona, J., Jabin, P.-E., Jabir, J.-F.: Local existence of analytical solutions to an incompressible Lagrangian stochastic model in a periodic domain. Commun. Partial Differ. Equ. doi:10.1080/03605302.2013.786727 (to appear)

  14. Brenier, Y.: A Vlasov–Poisson type formulation of the Euler equations for perfect incompressible fluids. Rapport de recherche INRIA (1989)

  15. Brenier Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12(3), 495–512 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Brenier Y.: Convergence of the Vlasov–Poisson system to the incompressible Euler equations. Comm. Partial Differ. Equ. 25(3–4), 737–754 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Brenier Y.: Remarks on the derivation of the hydrostatic Euler equations. Bull. Sci. Math. 127(7), 585–595 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Brenier Y., Grenier E.: Limite singulière du système de Vlasov–Poisson dans le régime de quasi neutralité: le cas indépendant du temps. C. R. Acad. Sci. Paris Sér. I Math. 318(2), 121–124 (1994)

    MATH  MathSciNet  Google Scholar 

  19. Cáceres, M.J., Carrillo, J.A., Dolbeault, J.: Nonlinear stability in L p for a confined system of charged particles. SIAM J. Math. Anal. 34(2), 478–494 (electronic) (2002)

  20. Degond P.: Spectral theory of the linearized Vlasov–Poisson equation. Trans. Am. Math. Soc. 294(2), 435–453 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Degond P., Deluzet F., Navoret L., Sun A.-B., Vignal M.-H.: Asymptotic-preserving particle-in-cell method for the Vlasov–Poisson system near quasineutrality. J. Comput. Phys. 229(16), 5630–5652 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108(4), 667–689 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Gallagher I.: Résultats récents sur la limite incompressible. Astérisque 299, Exp. No. 926: vii, 29–57 (2005). (Séminaire Bourbaki. vol. 2003/2004)

  24. Gérard-Varet D., Dormy E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc. 23(2), 591–609 (2010)

    Article  MATH  Google Scholar 

  25. Gerard-Varet, D., Masmoudi, N.: Well-posedness for the Prandtl system without analyticity or monotonicity. ArXiv preprint arXiv:1305.0221 (2013)

  26. Gérard-Varet D., Nguyen T.: Remarks on the ill-posedness of the Prandtl equation. Asymptot. Anal. 77(1–2), 71–88 (2012)

    MATH  MathSciNet  Google Scholar 

  27. Grenier E.: Defect measures of the Vlasov–Poisson system in the quasineutral regime. Comm. Partial Differ. Equ. 20(7–8), 1189–1215 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Grenier E.: Oscillations in quasineutral plasmas. Comm. Partial Differ. Equ. 21(3–4), 363–394 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  29. Grenier, E.: Limite quasineutre en dimension 1. In: Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999), pages Exp. No. II, 8. Univ. Nantes, Nantes (1999)

  30. Grenier E.: On the derivation of homogeneous hydrostatic equations. M2AN Math. Model. Numer. Anal. 33(5), 965–970 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Grenier E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Guo Y., Nguyen T.: A note on Prandtl boundary layers. Commun. Pure Appl. Math. 64(10), 1416–1438 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Guo Y., Strauss W.A.: Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincaré Anal. Non Linéaire 12(3), 339–352 (1995)

    MATH  MathSciNet  Google Scholar 

  34. Guo Y., Strauss W.A.: Unstable BGK solitary waves and collisionless shocks. Commun. Math. Phys. 195(2), 267–293 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Han-Kwan D.: Quasineutral limit of the Vlasov–Poisson system with massless electrons. Comm. Partial Differ. Equ. 36(8), 1385–1425 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hauray M.: On two-dimensional Hamiltonian transport equations with \({L_{\rm loc}^p}\) coefficients. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(4), 625–644 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Hauray, M.: Mean field limit for the one dimensional Vlasov–Poisson equation. Séminaire Laurent Schwartz—EDP et applications 21, 16 (2012–2013)

  38. Holm D.D., Marsden J.E., Ratiu T., Weinstein A.: Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 123, 1–2 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Jabin P.-E., Nouri A.: Analytic solutions to a strongly nonlinear Vlasov equation. C. R. Math. Acad. Sci. Paris 349(9–10), 541–546 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lin Z., Zeng C.: Small BGK waves and nonlinear Landau damping. Commun. Math. Phys. 306(2), 291–331 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Lin, Z., Zeng, C.: Small BGK waves and nonlinear Landau damping (higher dimensions). Arxiv preprint arXiv:1106.4368 (2011)

  42. Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 1, volume 3 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York, (1996). Incompressible models, Oxford Science Publications

  43. Marchioro C., Pulvirenti M.: A note on the nonlinear stability of a spatially symmetric Vlasov–Poisson flow. Math. Methods Appl. Sci. 8(2), 284–288 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Masmoudi N.: From Vlasov–Poisson system to the incompressible Euler system. Comm. Partial Differ. Equ. 26(9–10), 1913–1928 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  45. Masmoudi, N., Wong, T.K.: Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods. ArXiv preprint arXiv:1206.3629 (2012)

  46. Masmoudi N., Wong T.K.: On the H s theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204(1), 231–271 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  47. Mouhot C., Villani C.: On Landau damping. Acta Math. 207(1), 29–201 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  48. Oleinik, O.A., Samokhin, V.N.: Mathematical models in boundary layer theory, volume 15 of Applied Mathematics and Mathematical Computation. Chapman Hall/CRC, Boca Raton (1999)

  49. Penrose O.: Electrostatic instability of a uniform non-Maxwellian plasma. Phys. Fluids 3, 258–265 (1960)

    Article  ADS  MATH  Google Scholar 

  50. Rein G.: Non-linear stability for the Vlasov–Poisson system–the energy-Casimir method. Math. Methods Appl. Sci. 17(14), 1129–1140 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Sammartino M., Caflisch R.E.: Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys. 192(2), 433–461 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Han-Kwan.

Additional information

Communicated by C. Mouhot

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han-Kwan, D., Hauray, M. Stability Issues in the Quasineutral Limit of the One-Dimensional Vlasov–Poisson Equation. Commun. Math. Phys. 334, 1101–1152 (2015). https://doi.org/10.1007/s00220-014-2217-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2217-4

Keywords

Navigation