Skip to main content
Log in

Kato Smoothing and Strichartz Estimates for Wave Equations with Magnetic Potentials

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let H be a selfadjoint operator and A a closed operator on a Hilbert space \({\mathcal{H}}\) . If A is H-(super)smooth in the sense of Kato-Yajima, we prove that \({AH^{-\frac{1}{4}}}\) is \({\sqrt{H}}\) -(super)smooth. This allows us to include wave and Klein-Gordon equations in the abstract theory at the same level of generality as Schrödinger equations.

We give a few applications and in particular, based on the resolvent estimates of Erdogan, Goldberg and Schlag (Forum Mathematicum 21:687–722, 2009), we prove Strichartz estimates for wave equations perturbed with large magnetic potentials on \({\mathbb{R}^{n}}\) , n ≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Artzi, Matania, Klainerman, Sergiu: Decay and regularity for the Schrödinger equation. J. Anal. Math. 58. Festschrift on the occasion of the 70th birthday of Shmuel Agmon, pp. 25–37 (1992)

  2. Burq N. et al.: Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay. Indiana Univ. Math. J. 53(6), 1665–1680 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chihara H.: Smoothing effects of dispersive pseudodifferential equations. Commun. Partial Differ. Equ. 27(9-10), 1953–2005 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. D’Ancona P., Fanelli L.: L p-boundedness of the wave operator for the one dimensional Schrödinger operator. Commun. Math. Phys. 268(2), 415–438 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. D’Ancona P., Fanelli L.: Strichartz and smoothing estimates of dispersive equations with magnetic potentials. Commun. Partial Differ. Equ. 33(4–6), 1082–1112 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. D’Ancona P., Racke R.: Evolution equations on non-flat waveguides. English. Arch. Ration. Mech. Anal. 206(1), 81–110 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. D’Ancona P., Selberg S.: Dispersive estimates for the 1D Schrödinger equation with a steplike potential. J. Differ. Equ. 252, 1603–1634 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Erdogan, B., Goldberg, M., Green, W.: Dispersive estimates for four dimensional Schrödinger and wave equations with obstructions at zero energy. Commun. Partial. Differ. Equ., arXiv:1310.6302

  9. Erdoğan M.B., Goldberg M., Schlag W.: Strichartz and smoothing estimates for Schrödinger operators with almost critical magnetic potentials in three and higher dimensions. Forum Math. 21, 687–722 (2009)

    MATH  MathSciNet  Google Scholar 

  10. Fang D., Wang C.: Weighted Strichartz estimates with angular regularity and their applications. Forum Math. 23(1), 181–205 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Green, W.: Time decay estimates for the wave equation with potential in dimension two (2013). arXiv:1307.2219v4 [math.AP]

  12. Hille, E., Phillips, R.S.: Functional analysis and semi-groups. Third printing of the revised edition of 1957, American Mathematical Society Colloquium Publications, vol. XXXI. Providence, R. I.: American Mathematical Society, pp. xii+808 (1974)

  13. Hoshiro T.: On weighted L 2 estimates of solutions to wave equations. J. Anal. Math. 72, 127–140 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ionescu A., Kenig C.: Well-posedness and local smoothing of solutions of Schrödinger equations. Math. Res. Lett. 12, 193–205 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Journé J.-L., Soffer A., Sogge Christopher D.: Decay estimates for Schrödinger operators. Commun. Pure Appl. Math. 44(5), 573–604 (1991)

    Article  MATH  Google Scholar 

  16. Kato T.: Wave operators and similarity for some non-selfadjoint operators. Math. Ann. 162, 258–279 (1965/1966)

    Article  MathSciNet  Google Scholar 

  17. Kato T., Yajima K.: Some examples of smooth operators and the associated smoothing effect. Rev. Math. Phys. 1(4), 481–496 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Marzuola J., Metcalfe J., Tataru D.: Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations. J. Funct. Anal. 255(6), 1497–1553 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mochizuki K.: Uniform resolvent estimates for magnetic Schrödinger operators and smoothing effects for related evolution equations. Publ. Res. Inst. Math. Sci. 46(4), 741–754 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Reed, M., Simon, B.: Methods of modern mathematical physics. IV. Analysis of operators. New York: Academic Press [Harcourt Brace Jovanovich Publishers], pp. xv+396 (1978)

  21. Rodnianski I., Schlag W.: Time decay for solutions of Schrödinger equations with rough and time-dependent potentials. Invent. Math. 155(3), 451–513 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Ruzhansky, M., Sugimoto, M.: A New Proof of Global Smoothing Estimates for Dispersive Equations. In: Advances in pseudo-differential operators. vol. 155. Oper. Theory Adv. Appl. Basel: Birkhäuser, pp. 65–75 (2004)

  23. Walther Björn G.: A sharp weighted L 2-estimate for the solution to the time-dependent Schrödinger equation. Ark. Mat. 37(2), 381–393 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Watanabe K.: Smooth perturbations of the selfadjoint operator \({|\Delta|^{\alpha/2}}\) . Tokyo J. Math. 14(1), 239–250 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yajima K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110(3), 415–426 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero D’Ancona.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ancona, P. Kato Smoothing and Strichartz Estimates for Wave Equations with Magnetic Potentials. Commun. Math. Phys. 335, 1–16 (2015). https://doi.org/10.1007/s00220-014-2169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2169-8

Keywords

Navigation