Skip to main content
Log in

Effect of edible coatings on quality parameters and phenol composition of ready-to-eat Salanova lettuce

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Minimally processed fresh-cut leafy vegetables are becoming one of the fastest growing segments in the food industry. In this context, new strategies to extend the preservation, such as the application of edible coatings, represent a key issue for the research community. In this study, the effects of emulsion-based edible coatings on the quality parameters of ready-to-eat Salanova lettuce were investigated. The coatings, sprayed on the fresh-cut lettuce, were composed of lemongrass essential oil (0.1%) dispersed in different polymers, such as alginate (ALG), chia mucilage (CM) and chitosan (CHIT). After storage at 4 °C for 14 days, the coatings showed similar performance in terms of visual appearance and water loss. Instead, by means of the spectroscopic and HPLC analyses, the ALG coating resulted the most effective in preserving bioactive pigments (chlorophyll and carotenoids) and the phenolic compounds. Specifically, with respect to the initial content of hydroxycinnamic compounds (2.53 mg/g chlorogenic acid equivalents), their depletion was estimated to be 27%, 62%, 79% and 84% in the ALG, CTRL, CM, CHIT samples, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data presented in this study are contained within the article.

References

  1. Shi M, Gu J, Wu H, Rauf A, Emran TB, Khan Z et al (2022) Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in lettuce—a comprehensive review. Antioxidants 11(6):1158. https://doi.org/10.3390/antiox11061158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. El-Nakhel C, Pannico A, Graziani G, Kyriacou MC, Giordano M, Ritieni A et al (2020) Variation in macronutrient content, phytochemical constitution and in vitro antioxidant capacity of green and red butterhead lettuce dictated by different developmental stages of harvest maturity. Antioxidants 9(4):300. https://doi.org/10.3390/antiox9040300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Giovenzana V, Casson A, Beghi R, Pampuri A, Fiorindo I, Tugnolo A et al (2021) Evaluation of consumer domestic habits on the environmental impact of ready-to-eat and minimally processed fresh-cut lamb’s lettuce. Sustain Prod Consum 28:925–935. https://doi.org/10.1016/j.spc.2021.07.021

    Article  Google Scholar 

  4. Saltveit ME (2000) Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock. Postharvest Biol Technol 21(1):61–69. https://doi.org/10.1016/S0925-5214(00)00165-4

    Article  CAS  Google Scholar 

  5. Degl’Innocenti E, Pardossi A, Tognoni F, Guidi L (2007) Physiological basis of sensitivity to enzymatic browning in ‘lettuce’, ‘escarole’ and ‘rocket salad’ when stored as fresh-cut products. Food Chem 104(1):209–215. https://doi.org/10.1016/j.foodchem.2006.11.026

    Article  CAS  Google Scholar 

  6. Degl’Innocenti E, Guidi L, Pardossi A, Tognoni F (2005) Biochemical study of leaf browning in minimally processed leaves of lettuce (Lactuca sativa L. var. Acephala). J Agric Food Chem 53(26):9980–9984. https://doi.org/10.1021/jf050927o

    Article  PubMed  CAS  Google Scholar 

  7. Reyes LF, Villarreal JE, Cisneros-Zevallos L (2007) The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem 101(3):1254–1262. https://doi.org/10.1016/j.foodchem.2006.03.032

    Article  CAS  Google Scholar 

  8. Singh S, Dubey A, Gangwar V, Kumar A, Kumar A, Kumar M et al (2023) Edible coatings for improving the storability of fresh fruits and vegetables: a review. Pharma Innov 12(6):3992–4002

    CAS  Google Scholar 

  9. Cofelice M, Cuomo F, Lopez F (2018) Rheological properties of alginate–essential oil nanodispersions. Colloids Interfaces 2(4):48. https://doi.org/10.3390/colloids2040048

    Article  CAS  Google Scholar 

  10. Cong Z, Shi Y, Wang Y, Wang Y, Chen N, Xue H (2018) A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites. Int J Bio Macromol 107:855–864. https://doi.org/10.1016/j.ijbiomac.2017.09.065

    Article  CAS  Google Scholar 

  11. Lopez F, Cinelli G, Colella M, De Leonardis A, Palazzo G, Ambrosone L (2014) The role of microemulsions in lipase-catalyzed hydrolysis reactions. Biotechnol Prog 30(2):360–366. https://doi.org/10.1002/btpr.1892

    Article  PubMed  CAS  Google Scholar 

  12. Cuomo F, Perugini L, Marconi E, Messia MC, Lopez F (2019) Enhanced curcumin bioavailability through nonionic surfactant/caseinate mixed nanoemulsions. J Food Sci 84(9):2584–2591. https://doi.org/10.1111/1750-3841.14759

    Article  PubMed  CAS  Google Scholar 

  13. Mosca M, Diantom A, Lopez F, Ambrosone L, Ceglie A (2013) Impact of antioxidants dispersions on the stability and oxidation of water-in-olive-oil emulsions. Eur Food Res Technol 236:319–328. https://doi.org/10.1007/s00217-012-1895-4

    Article  CAS  Google Scholar 

  14. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci 51(4):285–330. https://doi.org/10.1080/10408398.2011.559558

    Article  CAS  Google Scholar 

  15. Sarengaowa HuW, Feng K, Xiu Z, Jiang A, Lao Y (2019) Efficacy of thyme oil-alginate-based coating in reducing foodborne pathogens on fresh-cut apples. Int J Food Sci 54(12):3128–3137. https://doi.org/10.1111/ijfs.14229

    Article  CAS  Google Scholar 

  16. Bhargava K, Conti DS, da Rocha SR, Zhang Y (2015) Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol 47:69–73. https://doi.org/10.1016/j.fm.2014.11.007

    Article  PubMed  CAS  Google Scholar 

  17. Kim I-H, Oh YA, Lee H, Song KB, Min SC (2014) Grape berry coatings of lemongrass oil-incorporating nanoemulsion. LWT 58(1):1–10. https://doi.org/10.1016/j.lwt.2014.03.018

    Article  CAS  Google Scholar 

  18. Cofelice M, Cinelli G, Lopez F, Di Renzo T, Coppola R, Reale A (2021) Alginate-assisted lemongrass (Cymbopogon nardus) essential oil dispersions for antifungal activity. Foods 10(7):1528. https://doi.org/10.3390/foods10071528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Raybaudi-Massilia R, Mosqueda-Melgar J, Soliva-Fortuny R, Martín-Belloso O (2016) Combinational edible antimicrobial films and coatings. Antimicrob Food Packag. https://doi.org/10.1016/B978-0-12-800723-5.00052-8

    Article  Google Scholar 

  20. Xylia P, Chrysargyris A, Tzortzakis N (2021) The combined and single effect of marjoram essential oil, ascorbic acid, and chitosan on fresh-cut lettuce preservation. Foods 10(3):575. https://doi.org/10.3390/foods10030575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ferraro G, Fratini E, Sacco P, Asaro F, Cuomo F, Donati I et al (2022) Structural characterization and physical ageing of mucilage from chia for food processing applications. Food Hydrocoll 129:107614. https://doi.org/10.1016/j.foodhyd.2022.107614

    Article  CAS  Google Scholar 

  22. Yousuf B, Qadri OS, Srivastava AK (2018) Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT 89:198–209. https://doi.org/10.1016/j.LWT.2017.10.051

    Article  CAS  Google Scholar 

  23. Fasciglione G, Goñi MG, Yommi AK, Perez-Bravo JJ, Ortueta R, Scampini A et al (2020) Revaluation of waste from fishing industry through generation of chitosan coatings to improve quality and extend shelf-life of minimally processed lettuce. Postharvest Biol Technol 170:111310. https://doi.org/10.1016/j.postharvbio.2020.111310

    Article  CAS  Google Scholar 

  24. Iftikhar A, Rehman A, Usman M, Ali A, Ahmad MM, Shehzad Q et al (2022) Influence of guar gum and chitosan enriched with lemon peel essential oil coatings on the quality of pears. Food Sci Nutr 10(7):2443–2454. https://doi.org/10.1002/fsn3.2851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Miller SI (2022) Impacts of fertility on physiological stress, photosynthetic activity, and crop development in Salanova lettuce. Master of Science in Environmental Sciences and Management Projects Paper 27. https://digitalcommons.calpoly.edu/nres_rpt/27

  26. Pace B, Cardinali A, Serio F, Cefola M (2014) Relationship between quality parameters and the overall appearance in lettuce during storage. Int J Food Process 1(1):18–26

    Article  Google Scholar 

  27. Pernice R, Scuderi D, Napolitano A, Fogliano V, Leonardi C (2007) Polyphenol composition and qualitative characteristics of fresh-cut lettuce in relation to cultivar, mulching, and storage. J Hortic Sci Biotechnol 82(3):420–427. https://doi.org/10.1080/14620316.2007.11512253

    Article  CAS  Google Scholar 

  28. Pascale SD, Maggio A, Fogliano V, Ambrosino P, Ritieni A (2001) Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J Hortic Sci Biotechnol 76(4):447–453. https://doi.org/10.1080/14620316.2001.11511392

    Article  Google Scholar 

  29. Kyriacou MC, El-Nakhel C, Graziani G, Pannico A, Soteriou GA, Giordano M et al (2019) Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreens species. Food Chem 277:107–118. https://doi.org/10.1016/j.foodchem.2018.10.098

    Article  PubMed  CAS  Google Scholar 

  30. Boy E, Mannar V, Pandav C, De Benoist B, Viteri F, Fontaine O et al (2009) Achievements, challenges, and promising new approaches in vitamin and mineral deficiency control. Nutr Rev 67(Suppl. 1):S24–S30. https://doi.org/10.1111/j.1753-4887.2009.00155.x

    Article  PubMed  Google Scholar 

  31. Rouphael Y, Cardarelli M, Bassal A, Leonardi C, Giuffrida F, Colla G (2012) Vegetable quality as affected by genetic, agronomic and environmental factors. J Food Agric Environ 10(3):680–688

    CAS  Google Scholar 

  32. El-Nakhel C, Pannico A, Kyriacou MC, Giordano M, De Pascale S, Rouphael Y (2019) Macronutrient deprivation eustress elicits differential secondary metabolites in red and green-pigmented butterhead lettuce grown in a closed soilless system. J Sci Food Agric 99(15):6962–6972. https://doi.org/10.1002/jsfa.9985

    Article  PubMed  CAS  Google Scholar 

  33. Kim D-E, Shang X, Assefa AD, Keum Y-S, Saini RK (2018) Metabolite profiling of green, green/red, and red lettuce cultivars: Variation in health beneficial compounds and antioxidant potential. Food Res Int 105:361–370. https://doi.org/10.1016/j.foodres.2017.11.028

    Article  PubMed  CAS  Google Scholar 

  34. Francis G, Gallone A, Nychas G, Sofos J, Colelli G, Amodio M et al (2012) Factors affecting quality and safety of fresh-cut produce. Crit Rev Food Sci 52(7):595–610. https://doi.org/10.1080/10408398.2010.503685

    Article  CAS  Google Scholar 

  35. Kijlstra A, Tian Y, Kelly ER, Berendschot TT (2012) Lutein: more than just a filter for blue light. Prog Retin Eye Res 31(4):303–315. https://doi.org/10.1016/j.preteyeres.2012.03.002

    Article  PubMed  CAS  Google Scholar 

  36. Mou B (2005) Genetic variation of beta-carotene and lutein contents in lettuce. J Am Soc Hortic 130(6):870–876. https://doi.org/10.21273/JASHS.130.6.870

    Article  CAS  Google Scholar 

  37. Yu R, Song H, Chen Y, Shi N, Shen H, Shi P et al (2023) Incorporation of ascorbic acid and L-cysteine in sodium carboxymethyl cellulose coating delays color deterioration and extends the shelf-life of fresh-cut asparagus lettuce (Lactuca sativa var. angustata). Postharvest Biol Technol 204:112419. https://doi.org/10.1016/j.postharvbio.2023.11241

    Article  CAS  Google Scholar 

  38. Gross J (2012) Pigments in vegetables: chlorophylls and carotenoids. Springer Science & Business Media

    Google Scholar 

  39. Sim C, Zaharah A, Tan M, Goh K (2015) Rapid determination of leaf chlorophyll concentration, photosynthetic activity and NK concentration of Elaies guineensis via correlated SPAD-502 chlorophyll index. Asian J Agric Res 9(3):132–138. https://doi.org/10.3923/ajar.2015.132.138

    Article  CAS  Google Scholar 

  40. Carvalho C, Villaño D, Moreno D, Serrano M, Valero D (2015) Alginate edible coating and cold storage for improving the physicochemical quality of cape gooseberry (Physalis peruviana L.). J Food Sci Nutr 1(1):7

    Google Scholar 

  41. Koh PC, Noranizan MA, Karim R, Nur Hanani ZA, Lasik-Kurdyś M (2018) Combination of alginate coating and repetitive pulsed light for shelf life extension of fresh-cut cantaloupe (Cucumis melo L. reticulatus cv Glamour). J Food Process Preserv 42(11):e13786. https://doi.org/10.1111/jfpp.13786

    Article  CAS  Google Scholar 

  42. Romani A, Pinelli P, Galardi C, Sani G, Cimato A, Heimler D (2002) Polyphenols in greenhouse and open-air-grown lettuce. Food Chem 79(3):337–342. https://doi.org/10.1016/S0308-8146(02)00170-X

    Article  CAS  Google Scholar 

  43. Ferreres F, Gil MI, Castañer M, Tomás-Barberán FA (1997) Phenolic metabolites in red pigmented lettuce (Lactuca sativa). Changes with minimal processing and cold storage. J Agric Food Chem 45(11):4249–4254. https://doi.org/10.1021/jf970399j

    Article  Google Scholar 

  44. Llorach R, Tomás-Barberán FA, Ferreres F (2004) Lettuce and chicory byproducts as a source of antioxidant phenolic extracts. J Agric Food Chem 52(16):5109–5116. https://doi.org/10.1021/jf040055a

    Article  PubMed  CAS  Google Scholar 

  45. Altunkaya A, Gökmen V (2011) Purification and characterization of polyphenol oxidase, peroxidase and lipoxygenase from freshly cut lettuce (L. sativa). Food Technol. Biotechnol. 49(2):249–256

    CAS  Google Scholar 

  46. De Leonardis A, Albanese T, Macciola V (2006) Biodegradation in vivo and in vitro of chlorogenic acid by a sunflower-seedling (Helianthus annuus) like-polyphenoloxidase enzyme. Eur Food Res Technol 223:295–301. https://doi.org/10.1007/s00217-005-0209-5

    Article  CAS  Google Scholar 

  47. Aydemir T (2004) Partial purification and characterization of polyphenol oxidase from artichoke (Cynara scolymus L.) heads. Food Chem 87(1):59–67. https://doi.org/10.1016/j.foodchem.2003.10.017

    Article  CAS  Google Scholar 

  48. Azarakhsh N, Osman A, Ghazali HM, Tan CP, Adzahan NM (2014) Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol Technol 88:1–7. https://doi.org/10.1016/j.postharvbio.2013.09.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported the project Profood IV, CUP: B64E20000180005, ARS01_00755 and partially supported by CSGI (Centre for Colloid and Surface Science).

Funding

This research was funded by MIPAAF 2015–2020, project Profood IV, CUP: B64E20000180005, ARS01_00755.

Author information

Authors and Affiliations

Authors

Contributions

MC: methodology, software, validation, formal analysis, investigation, data curation, original draft preparation, writing—review and editing, and visualization. AI: software, formal analysis, investigation, data curation, and writing—review editing. FL: conceptualization, resources, original draft preparation, supervision, project administration, and funding acquisition. ADL: conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, original draft preparation, writing—review and editing, visualization, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Antonella De Leonardis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Compliance with ethics requirements

This article does not contain any studies involving human or animal participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cofelice, M., Iftikhar, A., Lopez, F. et al. Effect of edible coatings on quality parameters and phenol composition of ready-to-eat Salanova lettuce. Eur Food Res Technol 250, 691–700 (2024). https://doi.org/10.1007/s00217-023-04425-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04425-4

Keywords

Navigation