Skip to main content
Log in

Onion quercetin inhibits vascular endothelial cell dysfunction and prevents hypertension

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Onion consumption has been reported to be associated with a lower incidence of myocardial infarction and stroke. Quercetin found in onions may contribute to this effect. This review aimed to describe the role of quercetin in vascular endothelial dysfunction-related hypertension. It also described the effects of quercetin on blood pressure (BP) regulation, vascular endothelial cell health associated with cardiovascular disease (CVD), and possible mechanisms underlying these effects. To this end, several epidemiological, in vivo, and in vitro studies published in PubMed, ScienceDirect, and Web of Science were analyzed. Epidemiological studies have shown that onions and quercetin can lower BP level and improve vascular dysfunction. The antioxidant and anti-inflammatory effects of quercetin may contribute to antihypertensive effect and endothelial cell health. In particular, in vivo studies have demonstrated that quercetin and its metabolites inhibit the renin–angiotensin (RA) system and increase nitric oxide (NO) production, reactive oxygen species production, and vascular endothelial cell inflammation, thereby possibly contributing to the improvement of endothelial dysfunction. Thus, quercetin acts directly on vascular endothelial cells to block hypertension and potentially contributes to CVD prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Abbreviations

Ang:

Angiotensin

ACE:

Angiotensin-converting enzyme

AP-1:

Activator protein 1

BP:

Blood pressure

CVD:

Cardiovascular disease

ER:

Endoplasmic reticulum

eNOS:

Endothelial nitric oxide synthase

ET-1:

Endothelin-1

HO-1:

Heme oxygenase-1

IL:

Interleukin

ICAM-1:

Intercellular adhesion molecule-1

MCP-1:

Monocyte chemoattractant protein-1

NADPH:

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

NF-κB:

Nuclear factor kappa B

oxLDL:

Oxidized LDL

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNF-α:

Tumor necrosis factor-α

XO:

Xanthine oxidase

References

  1. Teshika JD, Zakariyyah AM, Zaynab T, Zengin G, Rengasamy KR, Pandian SK, Fawzi MM (2019) Traditional and modern uses of onion bulb (Allium cepa L.): a systematic review. Crit Rev Food Sci Nutr. 59(sup1):39–70. https://doi.org/10.1080/10408398.2018.1499074

    Article  CAS  Google Scholar 

  2. Ren F, Reilly K, Kerry JP, Gaffney M, Hossain M, Rai DK (2017) Higher antioxidant activity, total flavonols, and specific quercetin glucosides in two different onion (Allium cepa L.) varieties grown under organic production: results from a 6-year field study. J Agric Food Chem. 65:5122–5132. https://doi.org/10.1021/acs.jafc.7b01352

    Article  CAS  PubMed  Google Scholar 

  3. Zamri N, Hamid HA (2019) Comparative study of onion (Allium cepa) and leek (Allium ampeloprasum): identification of organosulphur compounds by UPLC-QTOF/MS and anticancer effect on MCF-7 cells. Plant Foods Hum Nutr. 74:525–530. https://doi.org/10.1007/s11130-019-00770-6

    Article  CAS  PubMed  Google Scholar 

  4. Ma YL, Zhu DY, Thakur K, Wang CH, Wang H, Ren YF, Zhang JG, Wei ZJ (2018) Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). Int J Biol Macromol. 111:92–101. https://doi.org/10.1016/j.ijbiomac.2017.12.154

    Article  CAS  PubMed  Google Scholar 

  5. Lanzotti V, Romano A, Lanzuise S, Bonanomi G, Scala F (2012) Antifungal saponins from bulbs of white onion, Allium cepa L. Phytochemistry 74:133–139. https://doi.org/10.1016/j.phytochem.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  6. Slimestad R, Fossen T, Vagen IM (2007) Onions: a source of unique dietary flavonoids. J Agric Food Chem. 55:10067–10080. https://doi.org/10.1021/jf0712503

    Article  CAS  PubMed  Google Scholar 

  7. Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 585:325–337. https://doi.org/10.1016/j.ejphar.2008.03.008

    Article  CAS  PubMed  Google Scholar 

  8. Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 10:84–89. https://doi.org/10.4103/0973-7847.194044

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dabeek WM, Marra MV (2019) Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients. 11:2288. https://doi.org/10.3390/nu11102288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ulusoy HG, Sanlier N (2020) A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr 60:3290–3303. https://doi.org/10.1080/10408398.2019.1683810

    Article  CAS  PubMed  Google Scholar 

  11. van Breda A, Graor RA, Katzen BT, Risius B, Gillings D (1991) Relative cost-effectiveness of urokinase versus streptokinase in the treatment of peripheral vascular disease. J Vasc Interv Radiol. 2:77–87. https://doi.org/10.1016/s1051-0443(91)72475-5

    Article  PubMed  Google Scholar 

  12. Mullen W, Edwards CA, Crozier A (2006) Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. Br J Nutr. 96:107–116. https://doi.org/10.1079/bjn20061809

    Article  CAS  PubMed  Google Scholar 

  13. Menendez C, Duenas M, Galindo P, Gonzalez-Manzano S, Jimenez R, Moreno L, Zarzuelo MJ, Rodriguez-Gomez I, Duarte J, Santos-Buelga C, Perez-Vizcaino F (2011) Vascular deconjugation of quercetin glucuronide: the flavonoid paradox revealed? Mol Nutr Food Res. 55:1780–1790. https://doi.org/10.1002/mnfr.201100378

    Article  CAS  PubMed  Google Scholar 

  14. Brull V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Muller C, Langguth P, Alteheld B, Fimmers R, Naaf S, Zimmermann BF, Stehle P, Egert S (2015) Effects of a quercetin-rich onion skin extract on 24 h ambulatory blood pressure and endothelial function in overweight-to-obese patients with (pre-)hypertension: a randomised double-blinded placebo-controlled cross-over trial. Br J Nutr. 114:1263–1277. https://doi.org/10.1017/S0007114515002950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Linseisen J, Radtke J, Wolfram G (1997) Flavonoid intake of adults in a Bavarian subgroup of the national food consumption survey. Z Ernahrungswiss 36:403–412. https://doi.org/10.1007/BF01617836

    Article  CAS  PubMed  Google Scholar 

  16. Hollman PC, van Trijp JM, Buysman MN, van der Gaag MS, Mengelers MJ, de Vries JH, Katan MB (1997) Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 418:152–156. https://doi.org/10.1016/s0014-5793(97)01367-7

    Article  CAS  PubMed  Google Scholar 

  17. Larson AJ, Symons JD, Jalili T (2010) Quercetin: a treatment for hypertension?-A review of efficacy and mechanisms. Pharmaceuticals (Basel). 3:237–250. https://doi.org/10.3390/ph3010237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferenczyova K, Kalocayova B, Bartekova M (2020) Potential implications of quercetin and its derivatives in cardioprotection. Int J Mol Sci. https://doi.org/10.3390/ijms21051585

    Article  PubMed  PubMed Central  Google Scholar 

  19. Marrelli M, Amodeo V, Statti G, Conforti F (2018) Biological properties and bioactive components of Allium cepa L.: focus on potential benefits in the treatment of obesity and related comorbidities. Molecules. 24:119. https://doi.org/10.3390/molecules24010119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Islam MS, Choi H, du Loots T (2008) Effects of dietary onion (Allium cepa L.) in a high-fat diet streptozotocin-induced diabetes rodent model. Ann Nutr Metab 53:6–12. https://doi.org/10.1159/000152868

    Article  CAS  PubMed  Google Scholar 

  21. Zhou Y, Li C, Feng B, Chen B, Jin L, Shen Y (2020) UPLC-ESI-MS/MS based identification and antioxidant, antibacterial, cytotoxic activities of aqueous extracts from storey onion (Allium cepa L. var. proliferum regel). Food Res Int 130:108969. https://doi.org/10.1016/j.foodres.2019.108969

    Article  CAS  PubMed  Google Scholar 

  22. Caldwell M, Martinez L, Foster JG, Sherling D, Hennekens CH (2019) Prospects for the primary prevention of myocardial infarction and stroke. J Cardiovasc Pharmacol Ther 24:207–214. https://doi.org/10.1177/1074248418817344

    Article  PubMed  Google Scholar 

  23. Egert S, Bosy-Westphal A, Seiberl J, Kurbitz C, Settler U, Plachta-Danielzik S, Wagner AE, Frank J, Schrezenmeir J, Rimbach G, Wolffram S, Muller MJ (2009) Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br J Nutr 102:1065–1074. https://doi.org/10.1017/S0007114509359127

    Article  CAS  PubMed  Google Scholar 

  24. Loke WM, Hodgson JM, Proudfoot JM, McKinley AJ, Puddey IB, Croft KD (2008) Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am J Clin Nutr 88:1018–1025. https://doi.org/10.1093/ajcn/88.4.1018

    Article  CAS  PubMed  Google Scholar 

  25. Konukoglu D, Uzun H (2017) Endothelial dysfunction and hypertension. Adv Exp Med Biol 956:511–540. https://doi.org/10.1007/5584_2016_90

    Article  PubMed  Google Scholar 

  26. Galindo P, Rodriguez-Gomez I, Gonzalez-Manzano S, Duenas M, Jimenez R, Menendez C, Vargas F, Tamargo J, Santos-Buelga C, Perez-Vizcaino F, Duarte J (2012) Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. PLoS One 7:e32673. https://doi.org/10.1371/journal.pone.0032673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tribolo S, Lodi F, Winterbone MS, Saha S, Needs PW, Hughes DA, Kroon PA (2013) Human metabolic transformation of quercetin blocks its capacity to decrease endothelial nitric oxide synthase (eNOS) expression and endothelin-1 secretion by human endothelial cells. J Agric Food Chem. 61:8589–8596. https://doi.org/10.1021/jf402511c

    Article  CAS  PubMed  Google Scholar 

  28. Wang L, Cheng CK, Yi M, Lui KO, Huang Y (2022) Targeting endothelial dysfunction and inflammation. J Mol Cell Cardiol 168:58–67. https://doi.org/10.1016/j.yjmcc.2022.04.011

    Article  CAS  PubMed  Google Scholar 

  29. Igic R, Behnia R (2003) Properties and distribution of angiotensin I converting enzyme. Curr Pharm Des 9:697–706. https://doi.org/10.2174/1381612033455459

    Article  CAS  PubMed  Google Scholar 

  30. Suvorava T, Metry S, Pick S, Kojda G (2022) Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochem Pharmacol 205:115256. https://doi.org/10.1016/j.bcp.2022.115256

    Article  CAS  PubMed  Google Scholar 

  31. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y, Ali F (2016) Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacology 24:1–10. https://doi.org/10.1007/s10787-015-0255-y

    Article  CAS  PubMed  Google Scholar 

  32. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S (2014) Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int 2014:406960. https://doi.org/10.1155/2014/406960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Terao J, Kawai Y, Murota K (2008) Vegetable flavonoids and cardiovascular disease. Asia Pac J Clin Nutr 17(Suppl 1):291–293

    CAS  PubMed  Google Scholar 

  34. Williamson G (2017) The role of polyphenols in modern nutrition. Nutr Bull. 42:226–235. https://doi.org/10.1111/nbu.12278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hadi HA, Carr CS, Al Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1:183–198

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bahram-Parvar M, Lim LT (2018) Fresh-cut onion: a review on processing, health benefits, and shelf-life. Compr Rev Food Sci Food Saf 17:290–308. https://doi.org/10.1111/1541-4337.12331

    Article  PubMed  Google Scholar 

  37. Marefati N, Ghorani V, Shakeri F, Boskabady M, Kianian F, Rezaee R, Boskabady MH (2021) A review of anti-inflammatory, antioxidant, and immunomodulatory effects of Allium cepa and its main constituents. Pharm Biol 59:287–302. https://doi.org/10.1080/13880209.2021.1874028

    Article  CAS  PubMed  Google Scholar 

  38. Li Q, Wang Y, Mai Y, Li H, Wang Z, Xu J, He X (2020) Health benefits of the flavonoids from onion: constituents and their pronounced antioxidant and anti-neuroinflammatory capacities. J Agric Food Chem 68:799–807. https://doi.org/10.1021/acs.jafc.9b07418

    Article  CAS  PubMed  Google Scholar 

  39. Grzelak-Blaszczyk K, Milala J, Kolodziejczyk K, Sojka M, Czarnecki A, Kosmala M, Klewicki R, Fotschki B, Jurgonski A, Juskiewicz J (2020) Protocatechuic acid and quercetin glucosides in onions attenuate changes induced by high fat diet in rats. Food Funct 11:3585–3597. https://doi.org/10.1039/c9fo02633a

    Article  CAS  PubMed  Google Scholar 

  40. Larson AJ, Symons JD, Jalili T (2012) Therapeutic potential of quercetin to decrease blood pressure: review of efficacy and mechanisms. Adv Nutr 3:39–46. https://doi.org/10.3945/an.111.001271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kwak JH, Seo JM, Kim NH, Arasu MV, Kim S, Yoon MK, Kim SJ (2017) Variation of quercetin glycoside derivatives in three onion (Allium cepa L.) varieties. Saudi J Biol Sci 24:1387–1391. https://doi.org/10.1016/j.sjbs.2016.05.014

    Article  CAS  PubMed  Google Scholar 

  42. Magar RT, Sohng JK (2020) A review on structure, modifications and structure-activity relation of quercetin and its derivatives. J Microbiol Biotechnol 30:11–20. https://doi.org/10.4014/jmb.1907.07003

    Article  CAS  PubMed  Google Scholar 

  43. Balasuriya N, Rupasinghe HP (2012) Antihypertensive properties of flavonoid-rich apple peel extract. Food Chem 135:2320–2325. https://doi.org/10.1016/j.foodchem.2012.07.023

    Article  CAS  PubMed  Google Scholar 

  44. Santos AC, Uyemura SA, Lopes JL, Bazon JN, Mingatto FE, Curti C (1998) Effect of naturally occurring flavonoids on lipid peroxidation and membrane permeability transition in mitochondria. Free Radic Biol Med 24:1455–1461. https://doi.org/10.1016/s0891-5849(98)00003-3

    Article  CAS  PubMed  Google Scholar 

  45. Grande F, Parisi OI, Mordocco RA, Rocca C, Puoci F, Scrivano L, Quintieri AM, Cantafio P, Ferla S, Brancale A, Saturnino C, Cerra MC, Sinicropi MS, Angelone T (2016) Quercetin derivatives as novel antihypertensive agents: synthesis and physiological characterization. Eur J Pharm Sci 82:161–170. https://doi.org/10.1016/j.ejps.2015.11.021

    Article  CAS  PubMed  Google Scholar 

  46. Jimenez R, Lopez-Sepulveda R, Romero M, Toral M, Cogolludo A, Perez-Vizcaino F, Duarte J (2015) Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct 6:409–414. https://doi.org/10.1039/c4fo00818a

    Article  CAS  PubMed  Google Scholar 

  47. Lu TM, Chiu HF, Shen YC, Chung CC, Venkatakrishnan K, Wang CK (2015) Hypocholesterolemic efficacy of quercetin rich onion juice in healthy mild hypercholesterolemic adults: a pilot study. Plant Foods Hum Nutr 70:395–400. https://doi.org/10.1007/s11130-015-0507-4

    Article  CAS  PubMed  Google Scholar 

  48. Law YY, Chiu HF, Lee HH, Shen YC, Venkatakrishnan K, Wang CK (2016) Consumption of onion juice modulates oxidative stress and attenuates the risk of bone disorders in middle-aged and post-menopausal healthy subjects. Food Funct 7:902–912. https://doi.org/10.1039/c5fo01251a

    Article  CAS  PubMed  Google Scholar 

  49. Boots AW, Drent M, de Boer VC, Bast A, Haenen GR (2011) Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin Nutr 30:506–512. https://doi.org/10.1016/j.clnu.2011.01.010

    Article  CAS  PubMed  Google Scholar 

  50. Batiha GE, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE, Algammal AM, Elewa YHA (2020) The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 9:374. https://doi.org/10.3390/foods9030374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zahedi M, Ghiasvand R, Feizi A, Asgari G, Darvish L (2013) Does quercetin improve cardiovascular risk factors and inflammatory biomarkers in women with type 2 diabetes: a double-blind randomized controlled clinical trial. Int J Prev Med 4:777–785

    PubMed  PubMed Central  Google Scholar 

  52. Edwards RL, Lyon T, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137:2405–2411. https://doi.org/10.1093/jn/137.11.2405

    Article  CAS  PubMed  Google Scholar 

  53. Huang H, Liao D, Dong Y, Pu R (2020) Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. Nutr Rev 78:615–626. https://doi.org/10.1093/nutrit/nuz071

    Article  PubMed  Google Scholar 

  54. Bondonno NP, Bondonno CP, Rich L, Mas E, Shinde S, Ward NC, Hodgson JM, Croft KD (2016) Acute effects of quercetin-3-O-glucoside on endothelial function and blood pressure: a randomized dose-response study. Am J Clin Nutr 104:97–103. https://doi.org/10.3945/ajcn.116.131268

    Article  CAS  PubMed  Google Scholar 

  55. Zhao XX, Lin FJ, Li H, Li HB, Wu DT, Geng F, Ma W, Wang Y, Miao BH, Gan RY (2021) Recent advances in bioactive compounds, health functions, and safety concerns of onion (Allium cepa L.). Front Nutr 8:669805. https://doi.org/10.3389/fnut.2021.669805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brull V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Muller C, Langguth P, Alteheld B, Fimmers R, Stehle P, Egert S (2017) No effects of quercetin from onion skin extract on serum leptin and adiponectin concentrations in overweight-to-obese patients with (pre-)hypertension: a randomized double-blinded, placebo-controlled crossover trial. Eur J Nutr 56:2265–2275. https://doi.org/10.1007/s00394-016-1267-0

    Article  CAS  PubMed  Google Scholar 

  57. Brull V, Burak C, Stoffel-Wagner B, Wolffram S, Nickenig G, Muller C, Langguth P, Alteheld B, Fimmers R, Stehle P, Egert S (2017) Acute intake of quercetin from onion skin extract does not influence postprandial blood pressure and endothelial function in overweight-to-obese adults with hypertension: a randomized, double-blind, placebo-controlled, crossover trial. Eur J Nutr 56:1347–1357. https://doi.org/10.1007/s00394-016-1185-1

    Article  CAS  PubMed  Google Scholar 

  58. Rodrigo R, Gonzalez J, Paoletto F (2011) The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res 34:431–440. https://doi.org/10.1038/hr.2010.264

    Article  CAS  PubMed  Google Scholar 

  59. Jones HS, Gordon A, Magwenzi SG, Naseem K, Atkin SL, Courts FL (2016) The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human umbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression. Mol Nutr Food Res 60:787–797. https://doi.org/10.1002/mnfr.201500751

    Article  CAS  PubMed  Google Scholar 

  60. Hung CH, Chan SH, Chu PM, Tsai KL (2015) Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol Nutr Food Res 59:1905–1917. https://doi.org/10.1002/mnfr.201500144

    Article  CAS  PubMed  Google Scholar 

  61. Sud N, Black SM (2009) Endothelin-1 impairs nitric oxide signaling in endothelial cells through a protein kinase Cdelta-dependent activation of STAT3 and decreased endothelial nitric oxide synthase expression. DNA Cell Biol 28:543–553. https://doi.org/10.1089/dna.2009.0865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Romero M, Jimenez R, Sanchez M, Lopez-Sepulveda R, Zarzuelo MJ, O’Valle F, Zarzuelo A, Perez-Vizcaino F, Duarte J (2009) Quercetin inhibits vascular superoxide production induced by endothelin-1: role of NADPH oxidase, uncoupled eNOS and PKC. Atherosclerosis 202:58–67. https://doi.org/10.1016/j.atherosclerosis.2008.03.007

    Article  CAS  PubMed  Google Scholar 

  63. Marasciulo FL, Montagnani M, Potenza MA (2006) Endothelin-1: the yin and yang on vascular function. Curr Med Chem 13:1655–1665. https://doi.org/10.2174/092986706777441968

    Article  CAS  PubMed  Google Scholar 

  64. Zhao X, Gu Z, Attele AS, Yuan CS (1999) Effects of quercetin on the release of endothelin, prostacyclin and tissue plasminogen activator from human endothelial cells in culture. J Ethnopharmacol 67:279–285. https://doi.org/10.1016/s0378-8741(99)00055-0

    Article  CAS  PubMed  Google Scholar 

  65. Lodi F, Winterbone MS, Tribolo S, Needs PW, Hughes DA, Kroon PA (2012) Human quercetin conjugated metabolites attenuate TNF-alpha-induced changes in vasomodulatory molecules in an HUASMCs/HUVECs co-culture model. Planta Med 78:1571–1573. https://doi.org/10.1055/s-0032-1315148

    Article  CAS  PubMed  Google Scholar 

  66. Galisteo M, Garcia-Saura MF, Jimenez R, Villar IC, Zarzuelo A, Vargas F, Duarte J (2004) Effects of chronic quercetin treatment on antioxidant defence system and oxidative status of deoxycorticosterone acetate-salt-hypertensive rats. Mol Cell Biochem 259:91–99. https://doi.org/10.1023/b:mcbi.0000021360.89867.64

    Article  CAS  PubMed  Google Scholar 

  67. Tian R, Yang Z, Lu N, Peng YY (2019) Quercetin, but not rutin, attenuated hydrogen peroxide-induced cell damage via heme oxygenase-1 induction in endothelial cells. Arch Biochem Biophys 676:108157. https://doi.org/10.1016/j.abb.2019.108157

    Article  CAS  PubMed  Google Scholar 

  68. Chen X, Li H, Wang Z, Zhou Q, Chen S, Yang B, Yin D, He H, He M (2020) Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAH/eNOS/NO pathway. Eur J Pharmacol 868:172885. https://doi.org/10.1016/j.ejphar.2019.172885

    Article  CAS  PubMed  Google Scholar 

  69. Chao CL, Hou YC, Chao PD, Weng CS, Ho FM (2009) The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. Br J Nutr 101:1165–1170. https://doi.org/10.1017/S0007114508073637

    Article  CAS  PubMed  Google Scholar 

  70. Shen Y, Croft KD, Hodgson JM, Kyle R, Lee IL, Wang Y, Stocker R, Ward NC (2012) Quercetin and its metabolites improve vessel function by inducing eNOS activity via phosphorylation of AMPK. Biochem Pharmacol 84:1036–1044. https://doi.org/10.1016/j.bcp.2012.07.016

    Article  CAS  PubMed  Google Scholar 

  71. Huang WY, Fu L, Li CY, Xu LP, Zhang LX, Zhang WM (2017) Quercetin, hyperin, and chlorogenic acid improve endothelial function by antioxidant, antiinflammatory, and ACE inhibitory effects. J Food Sci 82:1239–1246. https://doi.org/10.1111/1750-3841.13706

    Article  CAS  PubMed  Google Scholar 

  72. Guo XD, Zhang DY, Gao XJ, Parry J, Liu K, Liu BL, Wang M (2013) Quercetin and quercetin-3-O-glucuronide are equally effective in ameliorating endothelial insulin resistance through inhibition of reactive oxygen species-associated inflammation. Mol Nutr Food Res 57:1037–1045. https://doi.org/10.1002/mnfr.201200569

    Article  CAS  PubMed  Google Scholar 

  73. Kleemann R, Verschuren L, Morrison M, Zadelaar S, van Erk MJ, Wielinga PY, Kooistra T (2011) Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis 218:44–52. https://doi.org/10.1016/j.atherosclerosis.2011.04.023

    Article  CAS  PubMed  Google Scholar 

  74. Panicker SR, Sreenivas P, Babu MS, Karunagaran D, Kartha CC (2010) Quercetin attenuates monocyte chemoattractant protein-1 gene expression in glucose primed aortic endothelial cells through NF-kappaB and AP-1. Pharmacol Res 62:328–336. https://doi.org/10.1016/j.phrs.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  75. Patel RV, Mistry BM, Shinde SK, Syed R, Singh V, Shin HS (2018) Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 155:889–904. https://doi.org/10.1016/j.ejmech.2018.06.053

    Article  CAS  PubMed  Google Scholar 

  76. Tribolo S, Lodi F, Connor C, Suri S, Wilson VG, Taylor MA, Needs PW, Kroon PA, Hughes DA (2008) Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells. Atherosclerosis 197:50–56. https://doi.org/10.1016/j.atherosclerosis.2007.07.040

    Article  CAS  PubMed  Google Scholar 

  77. Preston RA, Ledford M, Materson BJ, Baltodano NM, Memon A, Alonso A (2002) Effects of severe, uncontrolled hypertension on endothelial activation: soluble vascular cell adhesion molecule-1, soluble intercellular adhesion molecule-1 and von Willebrand factor. J Hypertens 20:871–877. https://doi.org/10.1097/00004872-200205000-00021

    Article  CAS  PubMed  Google Scholar 

  78. Liu Y, Liu T, McCarron RM, Spatz M, Feuerstein G, Hallenbeck JM, Siren AL (1996) Evidence for activation of endothelium and monocytes in hypertensive rats. Am J Physiol 270(6 Pt 2):H2125-2131. https://doi.org/10.1152/ajpheart.1996.270.6.H2125

    Article  CAS  PubMed  Google Scholar 

  79. DeSouza CA, Dengel DR, Macko RF, Cox K, Seals DR (1997) Elevated levels of circulating cell adhesion molecules in uncomplicated essential hypertension. Am J Hypertens 10(12 Pt 1):1335–1341. https://doi.org/10.1016/s0895-7061(97)00268-9

    Article  CAS  PubMed  Google Scholar 

  80. Chen T, Zhang X, Zhu G, Liu H, Chen J, Wang Y, He X (2020) Quercetin inhibits TNF-alpha induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine (Baltimore) 99:e22241. https://doi.org/10.1097/MD.0000000000022241

    Article  CAS  PubMed  Google Scholar 

  81. Cai X, Bao L, Ding Y, Dai X, Zhang Z, Li Y (2017) Quercetin alleviates cell apoptosis and inflammation via the ER stress pathway in vascular endothelial cells cultured in high concentrations of glucosamine. Mol Med Rep 15:825–832. https://doi.org/10.3892/mmr.2016.6054

    Article  CAS  PubMed  Google Scholar 

  82. Wang X, Huang J, Hou H, Chen D (2022) The relationship with the stability between GRP78, CHOP and human carotid atherosclerotic plaque. Clin Neurol Neurosurg 212:107067. https://doi.org/10.1016/j.clineuro.2021.107067

    Article  PubMed  Google Scholar 

  83. Taguchi K, Tano I, Kaneko N, Matsumoto T, Kobayashi T (2020) Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Biomed Pharmacother 129:110463. https://doi.org/10.1016/j.biopha.2020.110463

    Article  CAS  PubMed  Google Scholar 

  84. White CR, Parks DA, Patel RP, Shelton J, Tarpey MM, Freeman BA, Darley-Usmar VM (2004) L-Arginine inhibits xanthine oxidase-dependent endothelial dysfunction in hypercholesterolemia. FEBS Lett 561:94–98. https://doi.org/10.1016/S0014-5793(04)00137-1

    Article  CAS  PubMed  Google Scholar 

  85. Spiekermann S, Landmesser U, Dikalov S, Bredt M, Gamez G, Tatge H, Reepschlager N, Hornig B, Drexler H, Harrison DG (2003) Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 107:1383–1389. https://doi.org/10.1161/01.cir.0000056762.69302.46

    Article  CAS  PubMed  Google Scholar 

  86. Higgins P, Dawson J, Lees KR, McArthur K, Quinn TJ, Walters MR (2012) Xanthine oxidase inhibition for the treatment of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Ther 30:217–226. https://doi.org/10.1111/j.1755-5922.2011.00277.x

    Article  CAS  PubMed  Google Scholar 

  87. Sun L, Xu G, Dong Y, Li M, Yang L, Lu W (2020) Quercetin protects against lipopolysaccharide-induced intestinal oxidative stress in broiler chickens through activation of Nrf2 pathway. Molecules. https://doi.org/10.3390/molecules25051053

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dai Q, Hong Y, Li J (2021) PVT1 knockdown inhibited the biological behavior of LPS-induced cardiac fibroblasts by regulating miR-24. Genes Genom 43:1003–1009. https://doi.org/10.1007/s13258-021-01104-0

    Article  CAS  Google Scholar 

  89. Li F, Liu J, Tang S, Yan J, Chen H, Li D, Yan X (2021) Quercetin regulates inflammation, oxidative stress, apoptosis, and mitochondrial structure and function in H9C2 cells by promoting PVT1 expression. Acta Histochem 123:151819. https://doi.org/10.1016/j.acthis.2021.151819

    Article  CAS  PubMed  Google Scholar 

  90. Yousefian M, Shakour N, Hosseinzadeh H, Hayes AW, Hadizadeh F, Karimi G (2019) The natural phenolic compounds as modulators of NADPH oxidases in hypertension. Phytomedicine 55:200–213. https://doi.org/10.1016/j.phymed.2018.08.002

    Article  CAS  PubMed  Google Scholar 

  91. Drozdz D, Kawecka-Jaszcz K (2014) Cardiovascular changes during chronic hypertensive states. Pediatr Nephrol 29:1507–1516. https://doi.org/10.1007/s00467-013-2614-5

    Article  PubMed  Google Scholar 

  92. Mackraj I, Govender T, Ramesar S (2008) The antihypertensive effects of quercetin in a salt-sensitive model of hypertension. J Cardiovasc Pharmacol 51:239–245. https://doi.org/10.1097/FJC.0b013e318162011f

    Article  CAS  PubMed  Google Scholar 

  93. Parichatikanond W, Pinthong D, Mangmool S (2012) Blockade of the renin-angiotensin system with delphinidin, cyanin, and quercetin. Planta Med 78:1626–1632. https://doi.org/10.1055/s-0032-1315198

    Article  CAS  PubMed  Google Scholar 

  94. Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, Menichini F (2007) Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excelsa (Roxb) (Simaroubaceae). Phytother Res 21:32–36. https://doi.org/10.1002/ptr.2008

    Article  CAS  PubMed  Google Scholar 

  95. Siti HN, Jalil J, Asmadi AY, Kamisah Y (2021) Rutin modulates MAPK pathway differently from quercetin in angiotensin II-induced H9c2 cardiomyocyte hypertrophy. Int J Mol Sci. https://doi.org/10.3390/ijms22105063

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang D, Ali F, Liu H, Cheng Y, Wu M, Saleem MZ, Zheng H, Wei L, Chu J, Xie Q, Shen A, Peng J (2022) Quercetin inhibits angiotensin II-induced vascular smooth muscle cell proliferation and activation of JAK2/STAT3 pathway: a target based networking pharmacology approach. Front Pharmacol 13:1002363. https://doi.org/10.3389/fphar.2022.1002363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang L, Tan A, An X, Xia Y, Xie Y (2020) Quercetin Dihydrate inhibition of cardiac fibrosis induced by angiotensin II in vivo and in vitro. Biomed Pharmacother 127:110205. https://doi.org/10.1016/j.biopha.2020.110205

    Article  CAS  PubMed  Google Scholar 

  98. Frangogiannis NG (2021) Cardiac fibrosis. Cardiovasc Res 117:1450–1488. https://doi.org/10.1093/cvr/cvaa324

    Article  CAS  PubMed  Google Scholar 

  99. Bhullar SK, Shah AK, Dhalla NS (2019) Store-operated calcium channels: potential target for the therapy of hypertension. Rev Cardiovasc Med. 20:139–151. https://doi.org/10.31083/j.rcm.2019.03.522

    Article  PubMed  Google Scholar 

  100. Hou X, Liu Y, Niu L, Cui L, Zhang M (2014) Enhancement of voltage-gated K+ channels and depression of voltage-gated Ca2+ channels are involved in quercetin-induced vasorelaxation in rat coronary artery. Planta Med 80:465–472. https://doi.org/10.1055/s-0034-1368320

    Article  CAS  PubMed  Google Scholar 

  101. Kunasegaran T, Mustafa MR, Murugan DD, Achike FI (2016) The bioflavonoid quercetin synergises with PPAR-gamma agonist pioglitazone in reducing angiotensin-II contractile effect in fructose-streptozotocin induced diabetic rats. Biochimie 125:131–139. https://doi.org/10.1016/j.biochi.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  102. Redondo A, Estrella N, Lorenzo AG, Cruzado M, Castro C (2012) Quercetin and catechin synergistically inhibit angiotensin II-induced redox-dependent signalling pathways in vascular smooth muscle cells from hypertensive rats. Free Radic Res 46:619–627. https://doi.org/10.3109/10715762.2012.660527

    Article  CAS  PubMed  Google Scholar 

  103. Luo J, Zhang C, Liu Q, Ou S, Zhang L, Peng X (2017) Combinative effect of sardine peptides and quercetin alleviates hypertension through inhibition of angiotensin I converting enzyme activity and inflammation. Food Res Int 100(Pt 1):579–585. https://doi.org/10.1016/j.foodres.2017.07.019

    Article  CAS  PubMed  Google Scholar 

  104. Challa VR, Babu PR, Challa SR, Johnson B, Maheswari C (2013) Pharmacokinetic interaction study between quercetin and valsartan in rats and in vitro models. Drug Dev Ind Pharm 39:865–872. https://doi.org/10.3109/03639045.2012.693502

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The author did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Overall planning, comparative analysis of similar studies, and manuscript writing.

Corresponding author

Correspondence to Kazuo Yamagata.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article dose not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagata, K. Onion quercetin inhibits vascular endothelial cell dysfunction and prevents hypertension. Eur Food Res Technol 250, 1–13 (2024). https://doi.org/10.1007/s00217-023-04368-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04368-w

Keywords

Navigation