Skip to main content
Log in

Comprehensive study of the volatile profile of Niágara Rosada (Vitis labrusca) wines produced from Brettanomyces anomalus using GC–FID–MS: a chemical and sensory approach

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

There has been a controversy concerning the use of Brettanomyces in wines due to its questionable behavior. Some authors reported that this yeast causes adverse effects in wines; other authors reported that this yeast could promote a floral and fruity aroma for wines. In this context, this study analyzed Brettanomyces anomalus as alternative yeast for winemaking, providing the relationship between chemical and sensory approaches. Isoamyl acetate (159 μgL−1), linalyl acetate (20.6 μgL−1), ethyl butanoate (176 μgL−1), ethyl hexanoate (29.2 μgL−1), and ethyl octanoate (6.30 μgL−1) were related to flavor acceptance, providing a sweet, fruity, and floral profile for the wines. Terpenes (β-myrcene, 20.7 mgL−1, and levomenol, 10.3 μgL−1) and acids, synergistically, drove the aroma and body acceptance. The overall acceptance was related to carbonilic compounds (nonanal) giving a citrus/green scent and benzene compounds, the latter contributing synergistically. This study showed the relevance of the use of Brettanomyces to improve the Vitis labrusca wine quality, resulting in sweet, fruity, and floral aroma, features very appreciated by Brazilian consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. De Castilhos MBM, Cattelan MG, Conti-Silva AC, Del Bianchi VL (2013) Influence of two different vinification procedures on the physicochemical and sensory properties of Brazilian non-Vitis vinifera red wines. LWT Food Sci Technol 54:360–366

    Article  CAS  Google Scholar 

  2. Schumaker MR, Diako C, Castura JC, Edwards CG, Ross CF (2019) Influence of wine composition on consumer perception and acceptance of Brettanomyces metabolites using temporal check-all-that-apply methodology. Food Res Int 116:963–972

    Article  CAS  PubMed  Google Scholar 

  3. Guichard H, Poupard P, Legoahec L, Millet M, Bauduin R, Le Quéré J (2019) Brettanomyces anomalus, a double drawback for cider aroma. LWT Food Sci Technol 102:214–222

    Article  CAS  Google Scholar 

  4. Rognså GH, Rathe M, Petersen MA, Misje KE, Hersleth M, Sivertsvik M, Risbo J (2017) From wine to wine reduction: sensory and chemical aspects. Int J Gastron Food Sci 9:62–74

    Article  Google Scholar 

  5. Steensels J, Daenen L, Malcorps P, Derdelinckx G, Verachtert H, Verstrepen KJ (2015) Brettanomyces yeasts—from spoilage organisms to valuable contributors to industrial fermentations. Int J Food Microbiol 206:24–38

    Article  CAS  PubMed  Google Scholar 

  6. Contreras A, Hidalgo C, Schmidt S, Henschke PA, Curtin C, Varela C (2015) The application of non-Saccharomyces yeast in fermentations with limited aeration as a strategy for the production of wine with reduced alcohol content. Int J Food Microbiol 205:7–15

    Article  CAS  PubMed  Google Scholar 

  7. Liu PT, Lu L, Duan CQ, Yan GL (2016) The contribution of indigenous non-Saccharomyces wine yeast to improved aromatic quality of Cabernet Sauvignon wines by spontaneous fermentation. LWT Food Sci Technol 71:356–363

    Article  CAS  Google Scholar 

  8. Loureiro V, Malfeito-Ferreira M (2006) Dekkera/Brettanomyces spp. In: Blackburn CW (ed) Food spoilage microorganisms. Elsevier, pp 354–398

    Chapter  Google Scholar 

  9. Basso RF, Alcarde AR, Portugal CB (2016) Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res Int 86:112–120

    Article  CAS  Google Scholar 

  10. Smith BD, Divol B (2016) Brettanomyces bruxellensis, a survivalist prepared for the wine apocalypse and other beverages. Food Microbiol 59:161–175

    Article  CAS  PubMed  Google Scholar 

  11. Crauwels S, Steensels J, Aerts G, Willems KA, Verstrepen KJ, Lievens B (2015) Brettanomyces bruxellensis, essential contributor in spontaneous beer fermentations providing novel opportunities for the brewing industry. Brew Sci 68:110–121

    Google Scholar 

  12. Rodrigues N, Gonçalves G, Pereira-da-Silva S, Malfeito-Ferreira M, Loureira V (2001) Development and use of a new medium to detect yeasts of the genera Dekkera/Brettanomyces. J Appl Microbiol 90:588–599

    Article  CAS  PubMed  Google Scholar 

  13. Cocolin L, Rantsiou K, Iacumin L, Zironi R, Comi G (2004) Molecular detection and identification of Brettanomyces/Dekkera bruxellensis and Brettanomyces/Dekkera anomalus in spoiled wines. Appl Environ Microbiol 70:1347–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oliveira AJ, Gallo CR, Alcarde VE, Godoy A and Amorim HV (1996) Métodos para o controle microbiológico na produção de açúcar e álcool. Fermentec/FEALQ/ESALQ, Piracicaba

  15. De Castilhos MBM, Corrêa OLS, Zanus MC, Maia JDG, Gómez-Alonso S, García-Romero E, Del Bianchi VL, Hermosín-Gutiérrez I (2015) Pre-drying and submerged cap winemaking: effects on polyphenolic compounds and sensory descriptors. Part II: BRS Carmem and Bordô (Vitis labrusca L.). Food Res Int 76:697–708

    Article  PubMed  Google Scholar 

  16. Ribéreau-Gayon J, Paynaud E, Sudrad P and Ribéreau-Gayon P (1982) Analyse et contrôle des vins. Traité d'oenologie. Dunod, Paris

  17. Official Methods of Analysis of AOAC International (2012) 19th ed., AOAC International, Gaithersburg, MD, USA

  18. Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    Article  CAS  Google Scholar 

  19. Ayala F, Echavarri JF and Negueruela AI (2012) MSCV software. Grupo de Color, Universidad de La Rioja-Universidad de Zaragoza

  20. De Castilhos MBM, Maia JDG, Gómez-Alonso S, Del Bianchi VL, Hermosín-Gutiérrez I (2016) Sensory acceptance drivers of pre-fermentation dehydration and submerged cap red wines produced from Vitis labrusca hybrid grapes. LWT Food Sci Technol 69:82–90

    Article  Google Scholar 

  21. Dutcosky SD (2019) Análise Sensorial de Alimentos. Champagnat–Pucpress, Viçosa

  22. Meilgaard M, Civille GV, Caar BT (2006) Sensory evaluation techniques. CRC Press, Boca Raton

    Book  Google Scholar 

  23. Bernardi G, Vendruscolo RG, Dos Santos FT, Barin JS, Cichoski AJ, Wagner R (2014) Jelly palm (Butia odorata) wine: characterization of volatile compounds responsible for aroma. Food Anal Methods 7:1982–1991

    Article  Google Scholar 

  24. Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2006) Handbook of enology. Wiley, Chichester

    Book  Google Scholar 

  25. Brasil (2005) Altera dispositivos da Lei n. 7678 de 8 de novembro de 1988. Diário Oficial da União

  26. Jackson RS (2020) Wine science: principles and applications. Academic Press, San Diego

    Google Scholar 

  27. Soares M, Welter L, Kuskoski EM, Gonzaga L, Fett R (2008) Phenolic compounds and antioxidant activity in skin of Niagara and Isabel grapes. Rev Bras Frutic 30:59–64

    Article  Google Scholar 

  28. Schwarz M, Picazo-Bacete JJ, Winterhalter P, Hermosín-Gutierrez I (2005) Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments. J Agric Food Chem 53:8372–8381

    Article  CAS  PubMed  Google Scholar 

  29. Tubia I, Prasad K, Pérez-Lorenzo E, Abadín C, Zumárraga M, Oyanguren I, Barbero F, Paredes J, Arana S (2018) Beverage spoilage yeast detection methods and control technologies: a review of Brettanomyces. Int J Food Microbol 283:65–76

    Article  CAS  Google Scholar 

  30. Di Toro MR, Capozzi V, Beneduce L, Alexandre H, Tristezza M, Durante M, Tufariello M, Grieco F, Spano G (2015) Intraspecific biodiversity and ‘spoilage potential’ of Brettanomyces bruxellensis in Apulian wines. LWT Food Sci Technol 60:102–108

    Article  Google Scholar 

  31. Belda I, Zarraonaindia I, Perisin M, Palacios A, Acedo A (2017) From vineyard soil to wine fermentation: microbiome approximations to explain the “terroir” concept. Front Microbiol 8:1–12

    Google Scholar 

  32. Lesschaeve I (2007) Sensory evaluation of wine and commercial realities: review of current practices and perspectives. Am J Enol Vitic 58:252–258

    Article  Google Scholar 

  33. Wedral D, Shewfelt R, Frank J (2010) The challenge of Brettanomyces in wine. LWT Food Sci Technol 43:1474–1479

    Article  CAS  Google Scholar 

  34. Suárez R, Suárez-Lepe JA, Morata A, Calderón F (2007) The production of ethylphenols in wine by yeasts of the genera Brettanomyces and Dekkera: a review. Food Chem 102:10–21

    Article  Google Scholar 

  35. Burin VM, Ferreira-Lima NE, Panceri CP, Bordignon-Luiz MT (2014) Bioactive compounds and antioxidante activity of Vitis vinifera and Vitis labrusca grapes: evaluation of different extraction methods. Microchem J 114:155–163

    Article  CAS  Google Scholar 

  36. Guth H (1997) Quantitation and sensory studies of character impact odorants of different white wine varieties. J Agric and Food Chem 45:3027–3032

    Article  CAS  Google Scholar 

  37. Mamede ME, Cardello HM, Pastore GM (2005) Evaluation of an aroma similar to that of sparkling wine: sensory and gas chromatography analyses of fermented grape musts. Food Chem 89:63–68

    Article  CAS  Google Scholar 

  38. Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kong C-L, Li A-H, Su J, Wang X-C, Chen C-Q, Tao Y-S (2019) Flavor modification of dry red wine from Chinese spine grape by mixed fermentation with Pichia fermentans and S. cerevisiae. LWT Food Sci Technol 109:83–92

    Article  CAS  Google Scholar 

  40. Cliff MA, Pickering GJ (2006) Determination of odour detection thresholds for acetic acid and ethyl acetate in ice wine. J Wine Res 17:45–52. https://doi.org/10.1080/09571260600633234

    Article  Google Scholar 

  41. Baek HH, Cadwallader KR (2006) Contribution of free and glycosidically bound volatile compounds to the aroma of Muscadine grape juice. J Food Sci 64:441–444

    Article  Google Scholar 

  42. Canonico L, Solomon M, Comitini F, Ciani M, Varela C (2019) Volatile profile of reduced alcohol wines fermented with selected non-Saccharomyces yeasts under different aeration conditions. Food Microbiol 84:103247

    Article  CAS  PubMed  Google Scholar 

  43. Peng CT, Wen Y, Tao YS, Lan YY (2013) Modulating the formation of Meili wine aroma by prefermentative freezing process. Journal of Agricultural and Food Chem 61:1542–1553

    Article  CAS  Google Scholar 

  44. Burdock GA (2005) Fenaroli’s handbook of flavor ingredients. CRC Press, Boca Raton

    Google Scholar 

  45. García-Carpintero EG, Sánchez-Palomo E, González Viñas MA (2014) Volatile composition of Bobal red wines subjected to alcoholic/malolactic fermentation with oak chips. LWT Food Sci Technol 55:586–594

    Article  Google Scholar 

  46. Wu Y, Duan S, Zhao L, Gao Z, Luo M, Song S, Xu W, Zhang C, Ma C, Wang S (2016) Aroma characterization based on aromatic series analysis in table grapes. Sci Rep 4:31116

    Article  Google Scholar 

  47. Sánchez-Palomo E, Delgado JA, Ferrer MA, González Viñas MA (2019) The aroma of La Mancha Chelva wines: chemical and sensory characterization. Food Res Int 119:135–142

    Article  PubMed  Google Scholar 

  48. Styger G, Prior B, Bauer FF (2011) Wine flavor and aroma. J Ind Microbiol 38:1145–1149

    CAS  Google Scholar 

  49. Jackson RS (2009) Wine tasting: a professional handbook. Academic Press, California

    Google Scholar 

  50. Fazzalari FA (1978) Compilation of Odor and Taste Threshold Values Data. ASTM Data Series DS 48A. American Society for Testing and Materials, Philadelphia, PA, USA

  51. Boscaini E, Van Ruth S, Biasioli F, Gasperi F, Mark TD (2003) Gas chromatography-olfactometry (GC-O) and proton transfer reaction-mass spectrometry (PTR-MS) analysis of the flavor profile of Grana Padano, Parmigiano Reggiano, and Grana Trentino Cheeses. J Agric Food Chem 51:1782–1790

    Article  CAS  PubMed  Google Scholar 

  52. Engel E, Baty C, Le Corre D, Souchon I, Martin N (2002) Flavor-active compounds potentially implicated in cooked cauliflower acceptance. J Agric Food Chem 50:6459–6467

    Article  CAS  PubMed  Google Scholar 

  53. Braun NA, Meier M, Schmaus G, Holscher B, Pickenhagen W (2003) Enantioselectivity in odor perception: synthesis and olfactory properties of iso-a-bisabolol, a new natural product. Helv 86(7):2698–2708

    Article  CAS  Google Scholar 

  54. Gómez-Míguez MJ, Gómez-Míguez M, Vicario IM, Heredia FJ (2007) Assessment of colour and aroma in white wines vinifications: effects of grape maturity and soil type. J Food Eng 79:758–764

    Article  Google Scholar 

  55. Ferreira V, López R, Cacho JF (2000) Quantitative determination of the odorants of young red wines from different grape varieties. J Sci Food Agric 80:1659–1667

    Article  CAS  Google Scholar 

  56. Etievant PX (1991) Wine. In: Maarse H (ed) Volatile compound in food and beverages. Marcel Dekker, New York, pp 483–546

    Google Scholar 

  57. López de Lerma N, García-Martinez T, Moreno J, Mauricio JC, Peinado RA (2012) Sweet wines with great aromatic complexity obtained by partial fermentation of must from Tempranillo dried grapes. Eur Food Res Technol 234:695–701

    Article  Google Scholar 

  58. Avellone G, Salvo A, Costa R, Saija E, Bongiorno D, Di Stefano V, Calabrese G, Dugo G (2018) Investigation on the influence of spray-drying technology on the quality of Sicilian Nero d’Avola wines. Food Chem 240:222–230

    Article  CAS  PubMed  Google Scholar 

  59. De Wet P (1978) Odour thresholds and their application to wine flavour studies. In: Proceedings of the South African society for enology and viticulture. South African society for enology and viticulture (Ed.). p 28–42

  60. Darriet P and Pons A (2017) Wine. In: Buettner A. (ed) Springer handbook of odor. Springer, Switzerland

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurício Bonatto Machado de Castilhos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

The Ethics in Research Committee of the Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University approved the Ethical Issues regarding sensory acceptance (process n. 2.447.651).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Júnior, J.R., dos Santos, I.D., Klein, B. et al. Comprehensive study of the volatile profile of Niágara Rosada (Vitis labrusca) wines produced from Brettanomyces anomalus using GC–FID–MS: a chemical and sensory approach. Eur Food Res Technol 249, 2977–2988 (2023). https://doi.org/10.1007/s00217-023-04342-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04342-6

Keywords

Navigation