Skip to main content

Advertisement

Log in

How abiotic stress induced by artificial wounding changes maturity levels and berry composition of Merlot (Vitis vinifera L.)

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Phenolic compounds are crucial for grape berry quality, wine, and human health. The factors that dramatically affect the composition and levels of metabolites are biotic and abiotic plant stressors. Wounding is one of these stressors. However, little is known about its effect on the accumulation and biosynthesis of the whole phenolic profile. This study examined the effects of artificial leaf wounding on metabolite accumulation in 'Merlot' grapes. Twenty-year-old vines underwent ten wounding treatments at different times. Results showed diverse responses with practical implications for managing berry maturity and quality. Early-season treatments accelerated ripening, while late-season treatments halted sugar accumulation. Late treatments increased total phenolics, but responses varied in the phenolic profile. T5 had the highest total phenolics, while T1 exhibited the highest tannin content. Wounding treatments increased total anthocyanins compared to control. Flavonoids and hydroxybenzoic acids responded differently, with T9 showing the highest ( +)-Catechin and Syringic acid contents. Vanillic acid T6 had the highest (–)-Epicatechin control content. Except for T7, all treatments had higher trans-resveratrol levels than control. Injury direction and timing had numerical and content effects, although not statistically significant. 'Merlot' grapes can perceive artificial wounds and mount a robust defense response. Wounding enhances the production of beneficial compounds, improving ripeness, chemical composition, wine quality, and human health. More research is needed for optimal wounding strategies, environmental friendliness, berry ripening, and leaf photosynthetic responses to injury. This study contributes to the initial records of artificial wounding treatments, given their complexity and recent emergence in research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oshunsanya SO, Nwosu NJ, Li Y (2019) Abiotic stress in agricultural crops under climatic conditions. In: Jhariya M, Banerjee A, Meena R, Yadav D (eds) Sustainable agriculture, forest and environmental management. Springer, Singapore. https://doi.org/10.1007/978-981-13-6830-1_3

    Chapter  Google Scholar 

  2. He M, He Q, Ding Z (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01771

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh S, Kumar V, Kapoor D, Kumar S, Singh S, Dhanjal DS, Datta S, Samuel J, Dey P, Wang S, Prasad R, Singh J (2020) Revealing on hydrogen sulfide and nitric oxide signals co-ordination for plant growth under stress conditions. Physiol Plantarum 168:301–317. https://doi.org/10.1111/ppl.13002

    Article  CAS  Google Scholar 

  4. Luzio A, Bernardo S, Correia C, Moutinho-Pereira J, Dinis L (2021) Phytochemical screening and antioxidant activity on berry, skin, pulp and seed from seven red Mediterranean grapevine varieties (Vitis vinifera L.) treated with kaolin foliar sunscreen. Sci Hortic 281:109962. https://doi.org/10.1016/j.scienta.2021.109962

    Article  CAS  Google Scholar 

  5. Modesti M, Macaluso M, Taglieri I, Bellincontro A, Sanmartin C (2021) Ozone and bioactive compounds in grapes and wine. Foods 10:2934. https://doi.org/10.3390/foods10122934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Revutska A, Belava V, Golubenko A, Taran N, Chen M (2021) Plant secondary metabolites as bioactive substances for innovative biotechnologies. E3S Web Conf. https://doi.org/10.1051/e3sconf/202128007014

    Article  Google Scholar 

  7. Maujean A, Brun O, Vesselle G, Bureau G, Boucher JM, Cousin M (1983) Investigations on grapevine maturation in the Champagne Region: method of forecasting the harvesting date. Vitis 22:137–150. https://doi.org/10.5073/vitis.1983.22.137-150

    Article  Google Scholar 

  8. Proestos C, Bakogiannis A, Psarianos C, Koutinas AA, Kanellaki M, Komaitis M (2005) High performance liquid chromatography analysis of phenolic substances in Greek wines. Food Control 16:319–323. https://doi.org/10.1016/j.foodcont.2004.03.011

    Article  CAS  Google Scholar 

  9. Doshi P, Adsule P, Banerjee K (2006) Phenolic composition and antioxidant activity in grapevine parts and berries (Vitis vinifera L.) cv. Kishmish Chornyi (sharad seedless) during maturation. Int J Food Sci 41:1–9. https://doi.org/10.1111/j.1365-2621.2006.01214.x

    Article  CAS  Google Scholar 

  10. Garrido J, Borges F (2013) Wine and grape polyphenols—a chemical perspective. Food Res Int 54:1844–1858. https://doi.org/10.1016/j.foodres.2013.08.002

    Article  Google Scholar 

  11. Šuković D, Knežević B, Gašić U, Sredojević M, Ćirić I, Todić S, Mutić J, Tešić Ž (2020) Phenolic profiles of leaves, grapes and wine of grapevine variety vranac (Vitis vinifera L.) from Montenegro. Foods 9:138. https://doi.org/10.3390/foods9020138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Friedman M (2014) Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. J Agric Food Chem 62:6025–6042. https://doi.org/10.1021/jf501266s

    Article  CAS  PubMed  Google Scholar 

  13. Bogdan C, Pop A, Iurian SM, Benedec D, Moldovan ML (2020) Research advances in the use of bioactive compounds from Vitis vinifera by-products in oral care. Antioxidants 9:502. https://doi.org/10.3390/antiox9060502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pande KB, Rizvi SI (2014) Role of red grape polyphenols as antidiabetic agents. Integr Med Res 3:119–125. https://doi.org/10.1016/j.imr.2014.06.001

    Article  Google Scholar 

  15. Nassiri-Asl M, Hosseinzadeh H (2016) Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive constituents: an update. Phytother Res 30:1392–1403. https://doi.org/10.1002/ptr.5644

    Article  CAS  PubMed  Google Scholar 

  16. Cantos E, Espín JC, Tomás-Barberán FA (2002) Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC–DAD–MS–MS. J Agric Food Chem 50:5691–5696. https://doi.org/10.1021/jf0204102

    Article  CAS  PubMed  Google Scholar 

  17. Castilla P, Echarri R, Dávalos A, Cerrato F, Ortega H, Teruel JL, Lucas MF, Gómez-Coronado D, Ortuño J, Lasunción MA (2006) Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. AJCN 84:252–262. https://doi.org/10.1093/ajcn/84.1.252

    Article  CAS  Google Scholar 

  18. Dani C, Oliboni LS, Vanderlinde R, Bonatto D, Salvador M, Henriques JAP (2007) Phenolic content and antioxidant activities of white and purple juices manufactured with organically- or conventionally-produced grapes. FCT 45:2574–2580. https://doi.org/10.1016/j.fct.2007.06.022

    Article  CAS  Google Scholar 

  19. Lacerda DS, Santos CF, Oliveira AS, Zimmermann R, Schneider R, Agostini F, Dani C, Funchal C, Gomez R (2014) Antioxidant and hepatoprotective effects of an organic grapevine leaf (Vitis labrusca L.) extract in diabetic rats. RSC Adv 4:52611–52619. https://doi.org/10.1039/C4RA08396B

    Article  CAS  Google Scholar 

  20. TahmazKaraman H, YükselKüskü D, Söylemezoğlu G, Çelik H (2022) Phenolic compound and antioxidant capacity contents of Vitis labrusca. L. genotypes (in Turkish with english abstract). Jotaf 19:318–331. https://doi.org/10.33462/jotaf.952108

    Article  Google Scholar 

  21. Kontou NRD, Psaltopoulou T, Soupos N, Polychronopoulos E, Xinopoulos D, Linos A, Panagiotakos D (2012) Alcohol consumption and colorectal cancer in a Mediterranean population: a case-control study. Dis Colon Rectum 55:703–710. https://doi.org/10.1097/DCR.0b013e31824e612a

    Article  PubMed  Google Scholar 

  22. Wang L, Ning C, Pan T, Cai K (2022) Role of silica nanoparticles in abiotic and biotic stress tolerance in plants: a review. Int J Mol Sci 23:1947. https://doi.org/10.3390/ijms23041947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hunter JJ, Volschenk CG, Zorer R (2016) Vineyard row orientation of Vitis vinifera L. cv. Shiraz/101-14 Mgt: climatic profiles and vine physiological status. Agric For Meteorol 228:104–119. https://doi.org/10.1016/j.agrformet.2016.06.013

    Article  Google Scholar 

  24. Mania E, Petrella F, Giovannozzi M, Piazzi M, Wilson A, Guidoni S (2021) Managing vineyard topography and seasonal variability to improve grape quality and vineyard sustainability. Agron 11:1142. https://doi.org/10.3390/agronomy11061142

    Article  Google Scholar 

  25. Yin H, Zhang Z, Xi Z (2022) Distinctive phenolic accumulation response to temperature-induced by row orientation of two field-grown Vitis vinifera cultivars. BFJ 123:1–16. https://doi.org/10.1108/BFJ-11-2021-1191

    Article  Google Scholar 

  26. Strack T, Stoll M (2021) Implication of row orientation changes on fruit parameters of Vitis vinifera L. cv. Riesling in steep slope vineyards. Foods 10:2682. https://doi.org/10.3390/foods10112682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hunter JK, Tarricone L, Volschenk C, Giacalone C, Melo MS, Zorer R (2020) Grapevine physiological response to row orientation-induced spatial radiation and microclimate changes. OENO One 54:411–433. https://doi.org/10.20870/oeno-one.2020.54.2.3100

    Article  Google Scholar 

  28. Teker T (2023) A study of kaolin effects on grapevine physiology and its ability to protect grape clusters from sunburn damage. Sci Hortic. https://doi.org/10.1016/j.scienta.2022.111824d

    Article  Google Scholar 

  29. Coombe BG (1987) Distribution of solutes within the developing grape berry in relation to its morphology. Am J Enol Vitic 38:120–127

    Article  CAS  Google Scholar 

  30. Blouin J, Guimberteau G (2000) Maturation et Maturite des Raisins. Feret, Bordeaux.

  31. Giusti MM, Wrolstad RE (2001) Characterization and measurement of anthocyanins by uv - visible spectroscopy characterization and measurement of anthocyanins by uv-visible spectroscopy. Curr Protoc Food Anal Chem 1:13. https://doi.org/10.1002/0471142913.faf0102s00

    Article  Google Scholar 

  32. Waterhouse AL (2002) Determination of total phenolics. Curr Protoc Food Anal Chem 6:1–8. https://doi.org/10.1002/0471142913.fai0101s06

    Article  Google Scholar 

  33. INRA (2007) Determination d’anthocyanes en echantillons de raisin. Mode operatiore. Ref: MO-LAB-23. UE Pech Rouge. Montpellier

  34. Meng J, Fang Y, Zhang A, Chen S, Xu T, Ren Z, Han G, Liu J, Li H, Zhang Z, Wang H (2011) Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang province. Int Food Res J 44:2830–2836. https://doi.org/10.1016/j.foodres.2011.06.032

    Article  CAS  Google Scholar 

  35. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  36. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237. https://doi.org/10.1016/s0891-5849(98)00315-3

    Article  CAS  PubMed  Google Scholar 

  37. R Core Team (2016) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

    Google Scholar 

  38. Öztürk MZ, Çetinkaya G, Aydın S (2017) Climate types of Turkey according to Köppen-Geiger climate classification (in Turkish with english abstract). Cografya Dergisi 35:17–27. https://doi.org/10.26650/jgeog295515

    Article  Google Scholar 

  39. Yılmaz E, Çiçek İ (2018) Detailed Köppen-Geiger climate regions of Turkey (in Turkish with english abstract). Journal of Human Sciences 15:225–242. https://doi.org/10.14687/jhs.v15i1.5040

    Article  Google Scholar 

  40. Candar S, Alço T, Yaşasın A, Korkutal İ, Bahar E (2019) Evaluation of long term changes for viticultural indices in Turkey Thrace (in Turkish with english abstract). Comujaf 7:259–268. https://doi.org/10.33202/comuagri.524811

    Article  Google Scholar 

  41. Lorenz D, Eichhorn K, Bleiholder H, Klose R, Meier U (1995) Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)-codes and descriptions according to the extended BBCH scale. Aust J Grape Wine Res 1:100–110. https://doi.org/10.1111/j.17550238.1995.tb00085.x

    Article  Google Scholar 

  42. Torija MJ, Beltran G, Novo M, Poblet M, Rozes N, Guillamon JM (2003) Effect of organic acids and nitrogen source on alcoholic fermentation: study of their buffering capacity. J Agric Food Chem 51:916–922. https://doi.org/10.1021/jf020094r

    Article  CAS  PubMed  Google Scholar 

  43. Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gero SH (2007) Biochemical changes thourhout grape berry development and fruit and wine quality. Food 1:1–22

    Google Scholar 

  44. Lee J, Rennaker C (2011) Influence of extraction methodology on grape composition values. Food Chem 126:295–300. https://doi.org/10.1016/j.foodchem.2010.11.006

    Article  CAS  Google Scholar 

  45. Dopico-García M, Fique A, Guerra L, Afonso J, Pereira O, Valentão P, Andrade P, Seabra R (2008) Principal components of phenolics to characterize red Vinho Verde grapes: Anthocyanins or non-coloured compounds? Talanta 75:1190–1202. https://doi.org/10.1016/j.talanta.2008.01.012

    Article  CAS  PubMed  Google Scholar 

  46. Camara MM, Diez C, Torija ME, Cano MP (1994) HPLC determination of organic acids in pineapple juices and nectars. Z Leb Unters Forsch 198:52–56

    Article  CAS  Google Scholar 

  47. Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H (2013) Berry phenolics of grapevine under challenging environments. Int J Mol Sci 14:18711–18739. https://doi.org/10.3390/ijms140918711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rieger M 2006 Introduction to fruit crops: grape (Vitis spp.). 229–250. 1st Edition, CRC Press. 520p.

  49. Abay C (2022) The effects of some abiotic stresses on primary and secondary metabolits in CV. Cabernet-Sauvignon (Vitis vinifera L.) (in Turkish with English abstract) [Master dissertation]. Tekirdağ Namık Kemal University. Tekirdağ, 165 p.

  50. Tok Abay C (2021) The effects of some abiotic and biotic stresses on primary and secondary metabolits in cv. Cabernet-sauvignon and cv. Merlot (in Turkish with English abstract) [Master dissertation]. Tekirdağ Namık Kemal University. Tekirdağ, 324 p.

  51. Özel N, Şat İG, Binici Hİ (2022) Determination of chemical, physical, and functional properties of ‘Karaerik’ grape (Vitis vinifera L.cv. ‘Karaerik’). Erwerbs-obstbau. https://doi.org/10.1007/s10341-022-00780-w

    Article  Google Scholar 

  52. Orak HH (2007) Total antioxidant activities, phenolics, anthocyanins, polyphenoloxidase activities of selected red grape cultivars and their correlations. Sci Hortic 111:235–241. https://doi.org/10.1016/j.scienta.2006.10.019

    Article  CAS  Google Scholar 

  53. Orhan DD, Orhan N, Özçelik B, Ergun F (2009) Biological activities of Vitis vinifera L. Turk J Biol 33:341–348. https://doi.org/10.3906/biy-0806-17

    Article  CAS  Google Scholar 

  54. Figueiredo-Gonzalez M, Martínez-Carballo E, Cancho-Grande B, Santiago JL, Martínez MC, Simal-Gandara J (2012) Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between their biosynthesis pathways. Food Chem 130:9–19. https://doi.org/10.1016/j.foodchem.2011.06.006

    Article  CAS  Google Scholar 

  55. Pantelić MM, Zagorac DDC, Davidović SM, Todić SR, Bešlić ZS, Gasić UM, Tešić ZLJ, Natić MM (2016) Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem 211:243–252. https://doi.org/10.1016/j.foodchem.2016.05.051

    Article  CAS  PubMed  Google Scholar 

  56. Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A (2002) Influence of preand postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera Cv. Shiraz Am J Enol Vitic 57:261–267

    Google Scholar 

  57. Sun RZ, Cheng G, Li Q, He YN, Wang Y, Lan YB, Li SY, Zhu YR, Song WF, Zhang X, Cui XD, Chen W, Wang J (2017) Light-induced variation in phenolic compounds in Cabernet Sauvignon grapes (Vitis vinifera L.) involves extensive transcriptome reprogramming of biosynthetic enzymes, transcription factors, and phytohormonal regulators. Front Plant Sci 8:547. https://doi.org/10.3389/fpls.2017.00547

    Article  PubMed  PubMed Central  Google Scholar 

  58. Nadal M, Arola L (1995) Effects of limited irrigation on the composition of must and wine of Cabernet Sauvignon under semi-arid conditions. Vitis 34:151–154

    CAS  Google Scholar 

  59. Nedelkovski D, Cvetković J, Beleski K, Poposka H (2017) Phenolic composition of vranec grapevine cultivar (Vitis vinifera L.) grafted on different rootstock. Bulg J Agric Sci 23:389–395

    Google Scholar 

  60. De La Hera-Orts ML, Martinez-Cutillas A, Lopez-Roca JM, Gomez-Plaza E (2005) Effect of moderate irrigation on grape composition during ripening. SJAR 3:352–361. https://doi.org/10.5424/sjar/2005033-158

    Article  Google Scholar 

  61. Anastasiadi M, Pratsinis H, Kletsas D, Skaltsounis A, Haroutounian SA (2010) Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: evaluation of the antioxidant activities of their extracts. Food Res Int 43:805–813. https://doi.org/10.1016/j.foodres.2009.11.017

    Article  CAS  Google Scholar 

  62. Kupe M, Karatas N, Unal MS, Ercisli S, Baron M, Sochor J (2021) phenolic composition and antioxidant activity of peel, pulp and seed extracts of different clones of the Turkish grape cultivar ‘Karaerik.’ Plants 10:2154. https://doi.org/10.3390/plants10102154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Król A, Amarowicz R, Weidner S (2015) The effects of cold stress on the phenolic compounds and antioxidant capacity of grapevine (Vitis vinifera L.) leaves. J Plant Physiol 189:97–104. https://doi.org/10.1016/j.jplph.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  64. Bergqvist J, Dokoozlian N, Ebisuda N (2001) Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and grenache in the central San Joaquin valley of California. Am J Enol Vitic 52:1–7

    Article  CAS  Google Scholar 

  65. Gonzalez-San JML, Barron LJR, Junquera B, Robredo M (1991) Application of principal component analysis to ripening indices for wine grapes. J Food Compost Anal 4:245–255

    Article  Google Scholar 

  66. Benikhlef L, L’Haridon F, Abou-Mansour E, Serrano M, Binda M, Costa A, Lehmann S, Métraux JP (2013) Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. BMC Plant Biol 13:133. https://doi.org/10.1186/1471-2229-13-133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chitarrini G, Zulini L, Masuero D, Vrhovsek U (2017) Lipid, phenol and carotenoid changes in “Bianca” grapevine leaves after mechanical wounding: a case study. Protoplasma 254:2095–2106. https://doi.org/10.1007/s00709-017-1100-5

    Article  CAS  PubMed  Google Scholar 

  68. Wongshaya P, Chayjarung P, Tothong C, Pilaisangsuree V, Somboon T, Kongbangkerd A, Limmongkon A (2020) Effect of light and mechanical stress in combination with chemical elicitors on the production of stilbene compounds and defensive responses in peanut hairy root culture. Plant Physiol Biochem 157:93–104. https://doi.org/10.1016/j.plaphy.2020.10.015

    Article  CAS  PubMed  Google Scholar 

  69. Sabina S, Jithesh MN (2021) Mechanical wounding of leaf midrib and lamina elicits differential biochemical response and mitigates salinity induced damage in tomato. J Appl Hortic 23:3–10. https://doi.org/10.37855/jah.2021.v23i01.01

    Article  Google Scholar 

  70. Nocera A, Ricardo-da-Silva JM, Canas S (2020) Antioxidant activity and phenolic composition of wine spirit resulting from an alternative ageing technology using micro-oxygenation: a preliminary study. OENO One 54:485–496. https://doi.org/10.20870/oeno-one.2020.54.3.3114

    Article  CAS  Google Scholar 

  71. Gabaston J, Cantos-Villar E, Biais B, Waffo-Teguo P, Renouf E, Corio-Costet MF, Richard T, Mérillon JM (2017) Stilbenes from Vitis vinifera L. waste: a sustainable tool for controlling Plasmopara viticola. J Agric Food Chem 65:2711–2718. https://doi.org/10.1021/acs.jafc.7b00241

    Article  CAS  PubMed  Google Scholar 

  72. Mansour G, Ghanem C, Mercenaro L, Nassif N, Hassoun G, Del Caro A (2022) Effects of altitude on the chemical composition of grapes and wine: a review. OENO One 56:227–239. https://doi.org/10.20870/oeno-one.2022.56.1.4895

    Article  CAS  Google Scholar 

  73. Rasines-Perea Z, Teissedre PL (2017) Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules 22:68. https://doi.org/10.3390/molecules22010068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bocsan IC, Măgureanu DC, Pop RM, Levai AM, Macovei ȘO, Pătrașca IM, Chedea VS, Buzoianu AD (2022) Antioxidant and anti-inflammatory actions of polyphenols from red and white grape pomace in ischemic heart diseases. Biomedicines 10:2337. https://doi.org/10.3390/biomedicines10102337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Geng K, Zhang Y, Lv D, Li D, Wang Z (2022) Effects of water stress on the sugar accumulation and organic acid changes in Cabernet Sauvignon grape berries. Hort Sci (Prague) 49:164–178. https://doi.org/10.17221/23/2021-HORTSCI

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Elman Bahar for helping in the design of the trail, Ecem Kübra Demirkapı and Özgür Aygan for their contributions to the fieldwork, Gamze Uysal Seçkin for laboratory work, and İlknur Korkutal for contribution to the intellectual content of the article.

Author information

Authors and Affiliations

Authors

Contributions

The author is responsible for all stages of the study, including the design and carrying out of the experiment, the data collection, and the article's writing.

Corresponding author

Correspondence to Serkan Candar.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Compliance with ethics requirements

This study does not contain any research involving Human Participants and/or Animals performed by the author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candar, S. How abiotic stress induced by artificial wounding changes maturity levels and berry composition of Merlot (Vitis vinifera L.). Eur Food Res Technol 249, 2611–2623 (2023). https://doi.org/10.1007/s00217-023-04318-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04318-6

Keywords

Navigation