Skip to main content
Log in

Chemical profile of craft brewer’s spent yeast and its antioxidant and antiproliferative activities

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Brewer’s spent yeast (BSY) is a prevalent by-product of the brewing industry currently used in animal feed as a cheap source of protein. In this study, chemical composition of BSY from two different beer production (American IPA, BSY1, and Imperial Stout, BSY2) was characterized, aiming for potential use as nutraceutical sources. Cytotoxicity of BSY extracts was also tested in freshly isolated peripheral blood mononuclear cells (PBMCs) and in tumoral (pancreatic cancer tumor cells, PANC-1, and colorectal adenocarcinoma tumor cells, CACO-2) and non-tumoral (umbilical vein endothelial cells, HUVEC) cell lineages. BSY samples showed similar lipid and ash content, but slight differences in the content of reducing sugars, total proteins, moisture and total proteins. BSY2 sample presented higher glucans and phenolic compound concentrations than BSY1. Main phenolic compounds identified were xanthohumol, ferulic acid, p-coumaric acid (BSY1 and BSY2), and gallic acid (BSY2). BSY1 and BSY2 extracts showed similar antioxidant capacity. Neither BSY1 nor BSY2 were cytotoxic to PBMCs, HUVEC and CACO-2, but were cytotoxic to PANC-1 cells, in a concentration-dependent manner. Our findings revealed that the residue of brewery can be a value-added functional food product with an adjuvant role against PANC-1 cell lines.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, P.A. Horn, upon request.

References

  1. Ferreira IMPLVO, Pinho O, Vieira E, Tavarela JG (2010) Brewer's Saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2009.10.008

  2. Jaeger A, Arendt EK, Zannini E, Sahin AW (2020) Brewer’s spent yeast (BSY), an underutilized brewing by-product. Fermentation 6(4):123. https://doi.org/10.3390/fermentation6040123

    Article  CAS  Google Scholar 

  3. Rasmeni ZZ, Madyira DM, Matheri A (2022) Comprehensive analysis of BSY as a biomass for potential energy resource recovery. Energy Rep 8:804–810. https://doi.org/10.1016/j.egyr.2022.10.272

    Article  Google Scholar 

  4. Garcia-Garcia G, Stone J, Rahimefard S (2019) Opportunities for waste valorization in the food industry e A case study with four UK food manufacturers. J Cleaner Prod 211:1339–1356

    Article  Google Scholar 

  5. Vélez-Erazo EM, Saturno RP, Marson GV, Hubinger MD (2021) Spent brewer’s yeast proteins and cell debris as innovative emulsifiers and carrier materials for edible oil microencapsulation. Food Res Int 140:109853. https://doi.org/10.1016/j.foodres.2020.109853

    Article  CAS  PubMed  Google Scholar 

  6. dos Santos TRM, de Mello PPM, Sérvulo EFC (2014) Solid wastes in brewing process: a review. J Brew Distilling 5:1–19. https://doi.org/10.5897/JBD2014.0043

  7. Marson GV, de Castro RJS, Belleville MP, Hubinger MD (2020) Spent brewer’s yeast as a source of high added value molecules: a systematic review on its characteristics, processing and potential applications. World J Microbiol Biotechnol 36:1–22

    Article  Google Scholar 

  8. Karlović A, Jurić A, Ćorić N, Habschied K, Krstanović V, Mastanjević K (2020) By-products in the malting and brewing industries—re-usage possibilities. Fermentation 6:82. https://doi.org/10.3390/fermentation6030082

    Article  CAS  Google Scholar 

  9. Podpora B, Świderski F, Sadowska A, Rakowska R, Wasiak-Zyz G (2016) Spent brewer’s yeast extracts as a new component of functional food Czech. J Food Sci 34:544–563. https://doi.org/10.17221/419/2015-CJFS

  10. Jacob FF, Striegel L, Rychlik M, Hutzler M, Methner FJ (2019) Spent yeast from brewing processes: a biodiverse starting material for yeast extract production. Fermentation 5:51. https://doi.org/10.3390/fermentation5020051

    Article  CAS  Google Scholar 

  11. Chua JY, Lu Y, Liu SQ (2017) Biotransformation of soy whey into soy alcoholic beverage by four commercial strains of Saccharomyces cerevisiae. Int J Food Microbiol 262:14–22. https://doi.org/10.1016/j.ijfoodmicro.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  12. Padilla B, Frau F, Ruiz-Matute AI, Montilla A, Belloch C, Manzanares P, Corzo N (2015) Production of lactulose oligosaccharides by isomerisation of transgalactosylated cheese whey permeate obtained by β-galactosidases from dairy Kluyveromyces. J Dairy Res 82:356–364

    Article  CAS  PubMed  Google Scholar 

  13. Rai AK, Jeyaram K (2017) Role of yeasts in food fermentation. Yeast diversity in human welfare, pp 83–113

  14. León-González ME, Gómez-Mejía E, Rosales-Conrado N, Madrid-Albarrán Y (2017) Residual brewing yeast as a source of polyphenols: extraction, identification, and quantification by chromatographic and chemometric tools. Food Chem. https://doi.org/10.1016/j.foodchem.2017.06.141

  15. Horn PA, Pedron NB, Junges LH, Rebelo AM, da Silva Filho HH, Zeni ALB (2021) Antioxidant profile at the different stages of craft beers production: the role of phenolic compounds. Eur Food Res Technol 247:439–452. https://doi.org/10.1007/s00217-020-03637-2

    Article  CAS  Google Scholar 

  16. Puligundla P, Mok C, Park S (2020) Advances in the valorization of spent brewer’s yeast Innovative. Food Sci Emerg Technol 62:102350. https://doi.org/10.1016/j.ifset.2020.102350

    Article  CAS  Google Scholar 

  17. Avramia I, Amariei S (2021) Spent brewer’s yeast as a source of insoluble β-glucans Int. J Mol Sci 22:825. https://doi.org/10.3390/ijms22020825

    Article  CAS  Google Scholar 

  18. Caruso A, Piermaria JA, Abraham AG, Micaela M (2022) β-Glucans obtained from beer spent yeasts as functional food grade additive: focus on biological activity. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2022.107963

  19. Del Cornò M, Gessani S, Conti L (2020) Shaping the innate immune response by dietary glucans: any role in the control of cancer? Cancers 8:155. https://doi.org/10.3390/cancers12010155

    Article  CAS  Google Scholar 

  20. Laroche C, Michaud P (2007) New developments and prospective applications for β (1, 3) Glucans. Recent Pat Biotechnol 1:59–73. https://doi.org/10.2174/187220807779813938

    Article  CAS  PubMed  Google Scholar 

  21. Wasziewicz-Robak B (2011) Spent brewer’s yeast and beta-glucans isolated from them as diet components modifying blood lipid metabolism disturbed by an atherogenic diet. IntechOpen. https://www.intechopen.com/chapters/42112. Accessed 20 Sept 2020

  22. Choromanska A, Kulbacka J, Harasym J, Oledzki R, Szewczyk A, Saczko J (2018) High-and low-molecular weight oat beta-glucan reveals antitumor activity in human epithelial lung cancer. Pathol Oncol Res 25:583–592

    Article  Google Scholar 

  23. Sima P, Richter J, Vetvicka V (2019) Glucans as new anticancer agents. Anticancer Res 39:3373–3378 https://doi.org/10.21873/anticanres.13480

  24. Stier H, Ebbeskotte V, Gruenwald J (2014) Immune-modulatory effects of dietary yeast Beta-1, 3/1, 6-d-glucan. Nutr J 28:13–38. https://doi.org/10.1186/1475-2891-13-38

  25. Bacha U, Nasir M, Iqbal S, Anjum AA (2017) Nutraceutical, anti-inflammatory, and immune modulatory effects of β-glucan isolated from yeast. Biomed Res Int. https://doi.org/10.1155/2017/8972678

    Article  PubMed  PubMed Central  Google Scholar 

  26. León-González ME, Gómez-Mejía E, Rosales-Conrado N, Madrid-Albarrán Y (2018) Residual brewing yeast as a source of polyphenols: extraction, identification, and quantification by chromatographic and chemometric tools. Food Chem 267:246–254. https://doi.org/10.1016/j.foodchem.2017.06.141

    Article  CAS  PubMed  Google Scholar 

  27. Tatullo M, Simoe GM, Tarullo F, Irlandese G, de Vito D, Marrelli M, Santacroce L, Cocco T, Ballini A, Scacco S (2016) Antioxidant and antitumor activity of a bioactive polyphenolic fraction isolated from the brewing process. Sci Rep 6:1–7. https://doi.org/10.1038/srep36042

    Article  CAS  Google Scholar 

  28. Amorim MM, Pereira JO, Monteiro KM, Ruiz AL, Carvalho JE, Pinheiro H, Pintado M (2016) Antiulcer and antiproliferative properties of spent brewer’s yeast peptide extracts for incorporation into foods. Food Funct 7:2331–2337. https://doi.org/10.1039/C6FO00030D

    Article  CAS  PubMed  Google Scholar 

  29. Vieira E, Brandão T, Ferreira IM (2013) Evaluation of brewer’s spent yeast to produce flavor enhancer nucleotides: influence of serial repitching. J Agric Food Chem 61:8724–8729. https://doi.org/10.1021/jf4021619

    Article  CAS  PubMed  Google Scholar 

  30. AOAC G (2016) Official methods of analysis of AOAC International. Rockville, MD: AOAC International. ISBN: 978-0-935584-87-5

  31. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  32. Vasconcelos NM, Pinto GAS, de Aragão FAS (2013) Determinação de açúcares redutores pelo ácido 3,5-dinitrosalicílico: histórico do desenvolvimento do método e estabelecimento de um protocolo para o laboratório de bioprocessos. Embrapa Agroindústria Tropical-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E). https://ainfo.cnptia.embrapa.br/digital/bitstream/item/103342/1/BPD13017.pdf. Accessed 01 Sept 2022

  33. Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    Article  CAS  Google Scholar 

  34. Zeni ALB, Albuquerque CACD, Gonçalves F, Latini A, Tasca CI, Podestá R, Pagliosa CM, Duarte FS, de Lima TCM, Maraschin M (2013) Phytochemical profile, toxicity and antioxidant activity of Aloysia gratissima (Verbenaceae). Quim Nova 36:69–73. https://doi.org/10.1590/S0100-40422013000100013

    Article  CAS  Google Scholar 

  35. Schulz M, Borges GDSC, Gonzaga LV, Seraglio SKT, Olivo IS, Azevedo MS, Nehring P, de Gois JS, de Almeida TD, Vitali L, Spudeit DA, Micke GA, Borges DLG, Fett R (2015) Chemical composition, bioactive compounds and antioxidant capacity of juçara fruit (Euterpe edulis Martius) during ripening. Food Res Int 77:125–131. https://doi.org/10.1016/j.foodres.2015.08.006

    Article  CAS  Google Scholar 

  36. da Silva LR, Ferreira SRS, Vitali L, Block JM (2019) May the superfruit red guava and its processing waste be a potential ingredient in functional foods? Food Res Int 115:451–459. https://doi.org/10.1016/j.foodres.2018.10.053

    Article  CAS  Google Scholar 

  37. Rudke AR, Mazzutti S, Andrade KS, Vitali L, Ferreira SRS (2019) Optimization of green PLE method applied for the recovery of antioxidant compounds from buriti (Mauritia flexuosa L.) shell. Food Chem 298:125061. https://doi.org/10.1016/j.foodchem.2019.125061

  38. Urrea-Victoria V, Pires JS, Torres PB, Chow F, dos Santos DAC (2016) Ensaio antioxidante em microplaca do poder de redução do ferro (FRAP) para extratos de algas. Inst Biociências USP. https://doi.org/10.13140/RG.2.2.24094.64322

  39. Brand-Williams W, Cuvelier MEBC (1995) Use of free radical methods to evaluate antioxidant activity. J Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

  40. Van de Loosdrecht AA, Beelen RHJ, Ossenkoppele GJ, Broekhoven MG, Langenhujsen MMAC (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174:311–320. https://doi.org/10.1016/0022-1759(94)90034-5

  41. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  42. Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 15:153–161. https://doi.org/10.1016/j.toxlet.2005.07.001

    Article  CAS  Google Scholar 

  43. Borenfreund E, Buerner JA (1985) A simple quantitative procedure using monolayer culture for toxicity assays (HTR/NR90). J Tissue Culture Methods 9:7–9

    Article  Google Scholar 

  44. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-x

    Article  CAS  PubMed  Google Scholar 

  45. Borra RC, Lotufo MA, Gagioti SM, Barros FM, Andrade PM (2009) A simple method to measure cell viability in proliferation and cytotoxicity assays. Braz Oral Res 23:255–262. https://doi.org/10.1590/S1806-83242009000300006

    Article  PubMed  Google Scholar 

  46. Martinez-Gomez A, Caballero I, Blanco CA (2020) Phenols and melanoidins as natural antioxidants in beer. Structure, Reactivity and Antioxidant Activity. Biomolecules 10:1–9. https://doi.org/10.3390/biom10030400

  47. Olivares-Galván S, Marina ML, García MC (2022) Extraction of valuable compounds from brewing residues: malt rootlets, spent hops, and spent yeast. Trends Food Sci. https://doi.org/10.1016/j.tifs.2022.06.002

    Article  Google Scholar 

  48. Zhu L, Wang J, Feng Y, Yin H, Lai H, Xiao R, He S, Yang Z, He Y (2022) Process optimization, amino acid composition, and antioxidant activities of protein and polypeptide extracted from waste beer yeast. Molecules 27:6825. https://doi.org/10.3390/molecules27206825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yamada EA, Alvim ID, Santucci MCC, Sgarbieri VC (2003) Composição centesimal e valor protéico de levedura residual da fermentação etanólica e de seus derivados. Rev Nutr 16:423–432. https://doi.org/10.1590/S1415-52732003000400006

    Article  CAS  Google Scholar 

  50. Bertolo AP, Biz AP, Kempka AP, Rigo E, Cavalheiro D (2019) Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. J Food Sci Technol 56:3697–3706. https://doi.org/10.1007/s13197-019-03833-3

  51. Lynch KM, Steffen EJ, Arendt EK (2016) Brewers’ spent grain: a review with an emphasis on food and health. J Inst Brew 122:553–568. https://doi.org/10.1002/jib.363

    Article  CAS  Google Scholar 

  52. Mathias TRDS, Alexandre VMF, Cammarota MC, de Mello PPM, Sérvulo EFC (2015) Characterization and determination of brewer’s solid wastes composition. J Inst Brew 121:400–404. https://doi.org/10.1002/jib.229

    Article  CAS  Google Scholar 

  53. de Araújo VBS, de Melo ANF, Costa AG, Castro-Gomez RH, Madruga MS, de Souza EL, Magnani M (2014) Followed extraction of β-glucan and mannoprotein from spent brewer’s yeast (Saccharomyces uvarum) and application of the obtained mannoprotein as a stabilizer in mayonnaise. Innov Food Sci Emerg Technol 23:164–170. https://doi.org/10.1016/j.ifset.2013.12.013

    Article  CAS  Google Scholar 

  54. Vieira EF, Carvalho J, Pinto E, Cunha S, Almeida AA, Ferreira IM (2016) Nutritive value, antioxidant activity and phenolic compounds profile of brewer’s spent yeast extract. J Food Compost Anal 52:44–51. https://doi.org/10.1016/j.jfca.2016.07.006

  55. Carvalho DO, Curto AF, Guido LF (2015) Determination of phenolic content in different barley varieties and corresponding malts by liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry. Antioxidants 4:563–576. https://doi.org/10.3390/antiox4030563

  56. Maillard MN, Soum MH, Boivin P, Berset C (1996) Antioxidant activity of barley and malt: relationship with phenolic content. LWT Food Sci Technol 29:238–244. https://doi.org/10.1006/fstl.1996.0035

    Article  CAS  Google Scholar 

  57. McCarthy AL, O’Callaghan YC, Neugart S, Piggott CO, Connolly A, Jansen MA, Krumbein A, Schreiner M, FitzGerald JR, O’Brien NM (2013) The hydroxycinnamic acid content of barley and brewers’ spent grain (BSG) and the potential to incorporate phenolic extracts of BSG as antioxidants into fruit beverages. Food Chem 141:2567–2574. https://doi.org/10.1016/j.foodchem.2013.05.048

    Article  CAS  PubMed  Google Scholar 

  58. Becker D, Stegmüller S, Richling E (2022) Characterization of brewer's spent grain extracts by tandem mass spectrometry and HPLC‐DAD: Ferulic acid dehydrodimers, phenolamides, and oxylipins. Food Sci Nutr. https://doi.org/10.1002/fsn3.3178

  59. Boronat A, Soldevila-Domenech N, Rodríguez-Morató J, Martínez-Huélamo M, Lamuela-Raventós RM, De la Torre R (2020) Beer phenolic composition of simple phenols, prenylated flavonoids and alkylresorcinols. Molecules 25:2582. https://doi.org/10.3390/molecules25112582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stewart GG (2017) Harvesting and cropping yeast: flocculation and centrifugation. Brewing and distilling yeasts, pp 259–308

  61. Gołąbczak J, Gendaszewska-Darmach E (2010) Ksantohumol i inne prenyloflawonoidy szyszek chmielu–aspekty biologiczne i technologiczne. Biotechnologia 88:75–89

    Google Scholar 

  62. Stevens JF, Taylor AW, Deinzer ML (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography-tandem mass spectrometry. J Chromatogr A. https://doi.org/10.1016/s0021-9673(98)01001-2

  63. Girisa S, Saikia Q, Bordoloi D, Banik K, Monisha J, Daimary UD, Verma E, Ahn KS, Kunnumakkara AB (2021) Xanthohumol from Hop: Hope for cancer prevention and treatment. IUBMB Life. https://doi.org/10.1002/iub.2522

  64. Paszkot J, Kawa-Rygielska J, Anioł M (2021) Properties of dry hopped dark beers with high xanthohumol content. Antioxidants 10:763. https://doi.org/10.3390/antiox10050763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mirzaei M, Mirdamadi S, Ehsani MR, Aminlari M, Hosseini E (2015) Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. J Funct Foods 19:259–268. https://doi.org/10.1016/j.jff.2015.09.031

    Article  CAS  Google Scholar 

  66. Hu SQ, Wang XZ, Guo SS, Li L, Hou Y (2014) Preparation and properties of bioactive peptides from yeast protein. Focus Modern Food Ind 3:52–58. https://doi.org/10.14355/fmfi.2014.03.007

  67. Habschied K, Lončarić A, Mastanjević K (2020) Screening of polyphenols and antioxidative activity in industrial beers. Foods 9:238. https://doi.org/10.3390/foods9020238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oliveira AS, Ferreira C, Pereira JO, Pintado ME, Carvalho AP (2022) Spent brewer's yeast (Saccharomyces cerevisiae) as a potential source of bioactive peptides: an overview. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.03.094

  69. Zhang XL, Zhang YD, Wang T, Guo HY, Liu QM, Su HX (2014) Evaluation on antioxidant effect of xanthohumol by different antioxidant capacity analytical methods. J Chem. https://doi.org/10.1155/2014/249485

    Article  Google Scholar 

  70. Żołnierczyk AK, Baczyńska D, Potaniec B, Kozłowska J, Grabarczyk M, Woźniak E, Anioł M (2017) Antiproliferative and antioxidant activity of xanthohumol acyl derivatives. Med Chem Res 26:1764–1771

    Article  Google Scholar 

  71. Gąsior J, Kawa-Rygielska J, Kucharska AZ (2020) Carbohydrates profile, polyphenols content and antioxidative properties of beer worts produced with different dark malts varieties or roasted barley grains. Molecules 25:3882. https://doi.org/10.3390/molecules25173882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rai Y, Pathak R, Kumari N, Sah DK, Pandey S, Kalra N, Soni R, Dwarakanath BS, Bhatt AN (2018) Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition. Sci Rep. https://doi.org/10.1038/s41598-018-19930-w

  73. Stuehr DJ (2004) Enzymes of the L-arginine to nitric oxide pathway. J Nutr. https://doi.org/10.1093/jn/134.10.2748S

  74. Huang J, de Paulis T, May JM (2004) Antioxidant effects of dihydrocaffeic acid in human EA. hy926 endothelial cells. J Nutr Biochem. https://doi.org/10.1016/j.jnutbio.2004.07.002

  75. Chen S, Yin DK, Yao WB, Wang YD, Zhang YR, Gao XD (2009) Macrophage receptors of polysaccharide isolated from a marine filamentous fungus Phoma herbarum YS4108. Acta Pharmacol Sin. https://doi.org/10.1038/aps.2009.93

  76. Jung EY, Lee HS, Chang UJ, Bae SH, Kwon KH, Suh HJ (2010) Acute and subacute toxicity of yeast hydrolysate from Saccharomyces cerevisiae. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2010.03.04448(6)

  77. Vannucci L, Krizan J, Sima P, Stakheev D, Caja F, Rajsiglova L, Saieh M (2013) Immunostimulatory properties and antitumor activities of glucans. Int J Onc. https://doi.org/10.3892/ijo.2013.1974

  78. Mantovani MS, Bellini MF, Angeli JPF, Oliveira RJ, Silva AF, Ribeiro LR (2008) β-Glucans in promoting health: prevention against mutation and cancer. Mutat Res. https://doi.org/10.1016/j.mrrev.2007.07.002

  79. Fakruddin M, Hossain MN, Ahmed MM (2017) Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC complement Altern Med. https://doi.org/10.1186/s12906-017-1591-9

  80. Caetano JM, Parames MT, Babo MJ, Santos A, Ferreira AB, Freitas AA, Coelho MR, Mateus AM (1986) Immunopharmacological effects of Saccharomyces boulardii in healthy human volunteers. Int J immunopharmacol. https://doi.org/10.1016/0192-0561(86)90106-2

  81. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F, Peng ZY (2019) Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxi Med Cell Long. https://doi.org/10.1155/2019/5080843

  82. Scott MB, Styring AK, McCullagh JS (2022) Polyphenols: bioavailability, microbiome interactions and cellular effects on health in humans and animals. Pathogens 11:770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutrit Biochem. https://doi.org/10.1016/j.jnutbio.2013.05.001

  84. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. https://doi.org/10.1093/ajcn/81.1.230S

  85. Ruskovska T, Maksimova V, Milenkovic D (2020) Polyphenols in human nutrition: from the in vitro antioxidant capacity to the beneficial effects on cardiometabolic health and related inter-individual variability—an overview and perspective. Br J Nutr. https://doi.org/10.1017/S0007114519002733

  86. Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal. https://doi.org/10.1089/ars.2012.4581

  87. Vieira EF, da Silva DD, Carmo H, Ferreira IM (2017) Protective ability against oxidative stress of brewers’ spent grain protein hydrolysates. Food Chem. https://doi.org/10.1016/j.foodchem.2017.02.050

  88. Zlotek U, Lewicki S, Markiewwicz A, Szymanowska U, Jakubczyk A (2021) Effects of drying methods on antioxidant, anti-inflammatory, and anticancer potentials of phenolic acids in lovage elicited by jasmonic acid and yeast extract. Antioxidants. https://doi.org/10.3390/antiox10050662

  89. Machado JJC, Faria MA, MeloA, Martins ZE, Ferreira IM (2019) Modeling of α-acids and xanthohumol extraction in dry-hopped beers. Food Chem. https://doi.org/10.1016/j.foodchem.2018.11.050

  90. Liu M, Hansen PE, Wang G, Qiu L, Dong J, Yin H, Qian Z, Yang M, Miao J (2015) Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules 20:754–779. https://doi.org/10.3390/molecules20010754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Delmulle L, Bellahcene A, Dhooge W, Comhaire F, Roelens F, Huvaere K, Heyerick A, Castronovo V, De Keukeleire D (2006) Anti-proliferative properties of prenylated flavonoids from hops (Humulus lupulus L.) in human prostate cancer cell lines. Phytomedicine 13:732–734. https://doi.org/10.1016/j.phymed.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  92. Monteghirfo S, Tosetti F, Ambrosini C, Stigliani S, Pozzi S, Frassoni F, Fassina G, Soverini S, Albini A, Ferrari N (2008) Antileukemia effects of xanthohumol in Bcr/Abl-transformed cells involve nuclear factor-κB and p53 modulation. Mol Cancer Ther 7:2692–2702. https://doi.org/10.1158/1535-7163.MCT-08-0132

    Article  CAS  PubMed  Google Scholar 

  93. Harikumar KB, Kunnumakkara AB, Ahn KS, Anand P, Krishnan S, Guha S, Aggarwal BB (2009) Modification of the cysteine residues in IκBα kinase and NF-κB (p65) by xanthohumol leads to suppression of NF-κB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood J Am Soc Hematol 113:2003–2013. https://doi.org/10.1182/blood-2008-04-151944

    Article  CAS  Google Scholar 

  94. Drenzek JG, Seiler NL, Jaskula-Sztul R, Rausch MM, Rose SL (2011) Xanthohumol decreases Notch1 expression and cell growth by cell cycle arrest and induction of apoptosis in epithelial ovarian cancer cell lines. Gynecol Oncol 122:396–401. https://doi.org/10.1016/j.ygyno.2011.04.027

  95. Ho YC, Liu C H, Chen CN, Duan KJ, Lin MT (2008) Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines. Phytother Res Int J Devoted Pharmacol Toxicol Eval Nat Prod Derivat 22:1465–1468. https://doi.org/10.1002/ptr.2481

  96. Chen CJ, Song BA, Yang S, Xu GF, Bhadury PS, Jin LH, Hu H, Li QZ, Liu F, Xue W, Lu P, Chen Z (2007) Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg Med Chem 15:3981–3989. https://doi.org/10.1016/j.bmc.2007.04.014

    Article  CAS  PubMed  Google Scholar 

  97. Festa M, Capasso A, D’Acunto CW, Masullo M, Rossi AG, Pizza C, Piacente S (2011) Xanthohumol induces apoptosis in human malignant glioblastoma cells by increasing reactive oxygen species and activating MAPK pathways. J Nat Prod 74:2505–2513. https://doi.org/10.1021/np200390x

  98. Zajc I, Filipič M, Lah TT (2012) Xanthohumol induces different cytotoxicity and apoptotic pathways in malignant and normal astrocytes. Phytother Res 26:1709–1713. https://doi.org/10.1002/ptr.4636

    Article  CAS  PubMed  Google Scholar 

  99. Carpenter KC, Breslin WL, Davidson T, Adams A, McFarlin BK (2013) Baker's yeast β-glucan supplementation increases monocytes and cytokines post-exercise: implications for infection risk? Br J Nutr. https://doi.org/10.1017/S0007114512001407

  100. Rahar S, Swami G, Nagpal N, Nagpal MA, Singh GS (2011) Preparation, characterization, and biological properties of β-glucans. J Adv Pharm Technol Res. https://doi.org/10.4103/2231-4040.82953

  101. Barsanti L, Passarelli V, Evangelista V, Frassanito AM, Gualtieri P (2011) Chemistry, physico-chemistry and applications linked to biological activities of β-glucans. Nat Prod Rep. https://doi.org/10.1039/c0np00018c

  102. Isoda N, Eguchi Y, Nukaya H, Hosho K, Suga Y, Suga T, Suga SN, Sugano K (2009) Clinical efficacy of superfine dispersed lentinan (beta-1,3-glucan) in patients with hepatocellular carcinoma. Hepatogastroenterology 56:437–441

    CAS  PubMed  Google Scholar 

  103. Shimizu K, Watanabe S, Matsuda K, Suga T, Nakazawa S, Shiratori K (2009) Efficacy of oral administered superfine dispersed lentinan for advanced pancreatic cancer. Hepatogastroenterology 56:240–244

    CAS  PubMed  Google Scholar 

  104. Nakashima A, Yamada K, Iwata O, Sugimoto R, Atsuji K, Ogawa T, Ishibashi-Ohgo N, Suzuki K (2018) β-Glucan in foods and its physiological functions. J Nut Sci Vitaminol. https://doi.org/10.3177/jnsv.64.8

  105. Atila F, Owaid MN, Shariati MA (2021) The nutritional and medical benefits of Agaricus bisporus: a review. J Microbiol Biotechnol Food Sci 2021:281–286. https://doi.org/10.15414/jmbfs.2017/18.7.3.281-286

Download references

Acknowledgements

This work has the financial support of the “Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq” (424660/2018-02) and “Coordenação De Aperfeiçoamento de Pessoal de Nível Superior, CAPES” (001). E.A. Almeida is a recipient of productivity fellowship by CNPq (307390/2017-9). The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscila Aparecida Horn.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the word reported in this paper.

Compliance with ethics requirements

This article was approved by the Ethics Committee Local: Registration No. 3.938.020.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horn, P.A., Zeni, A.L.B., Cavichioli, N. et al. Chemical profile of craft brewer’s spent yeast and its antioxidant and antiproliferative activities. Eur Food Res Technol 249, 2001–2015 (2023). https://doi.org/10.1007/s00217-023-04268-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04268-z

Keywords

Navigation