Skip to main content
Log in

Nectar honey from Turkey: crystallization and physicochemical profile

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Honey is a traditional food used by humans due to many therapeutic properties. Turkey is in a good position for the production of bee products, and honey is the most popular bee product in the country. In this study, the aim was to evaluate the quality parameters of 40 honey samples based on physicochemical parameters and to gain information about speed of crystallization. For this purpose, moisture (%), fructose (%), glucose (%), fructose + glucose (F + G, %), fructose/glucose (F/G), glucose/moisture (G/M), and proline (mg/kg) contents were determined in honey samples and cluster analysis was performed. When the sugar profile of honey samples is examined, F + G was 61.63–78.03%, F/G was 0.99–1.25, moisture content was 14.9–19.1%, and proline content was 384.41–1271.56 mg/kg. These results comply with national standards. Honey samples tend to crystallize quickly when their crystallization properties are evaluated based on F/G and G/M ratios. Consequently, the quality of honey differs according to the region from which it is produced and it is natural for honey to crystallize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Anklam E (1998) A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem 63:549–562. https://doi.org/10.1016/s0308-8146(98)00057-0

    Article  CAS  Google Scholar 

  2. Bayram N, Yüzer MO, Bayram S (2019) Melissopalynology analysis, physicochemical properties, multi-element content and antimicrobial activity of honey samples collected from Bayburt, Turkey. Uludağ Bee J 19:161–176

    Google Scholar 

  3. Bergamo G, Seraglio SKT, Gonzaga LV, Fett R, Costa ACO (2019) Physicochemical characteristics of bracatinga honeydew honey and blossom honey produced in the state of Santa Catarina: an approach to honey differentiation. Int Food Res J 116:745–754. https://doi.org/10.1016/j.foodres.2018.09.007

    Article  CAS  Google Scholar 

  4. Bogdanov S, Ruoff K, Oddo LP (2004) Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35(1):4–17. https://doi.org/10.1051/apido:2004047

    Article  Google Scholar 

  5. Bouhlali EDT, Bammou M, Sellam K, El Midaoui A, Bourkhis B, Ennassir J, Alem C, Filali-Zegzouti Y (2019) Physicochemical properties of eleven monofloral honey samples produced in Morocco. Arab J Basic Appl Sci 26(1):476–487. https://doi.org/10.1080/25765299.2019.1687119

    Article  Google Scholar 

  6. Bruni I, Galimberti A, Caridi L, Scaccabarozzi D, De Mattia F, Casiraghi M, Labra M (2015) A DNA barcoding approach to identify plant species in multiflower honey. Food Chem 170:308–315. https://doi.org/10.1016/j.foodchem.2014.08.060

    Article  CAS  PubMed  Google Scholar 

  7. Can Z, Yildiz O, Sahin H, Turumtay EA, Silici S, Kolayli S (2015) An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chem 180:133–141. https://doi.org/10.1016/j.foodchem.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  8. Codex Alimentarius Commission (2001) Revised codex standard for honey. Codex Standard 12–1981. FAO and WHO, Rome

    Google Scholar 

  9. Cotte JF, Casabianca H, Chardon S, Lheritier J, Grenier-Loustalot MF (2003) Application of carbohydrate analysis to verify honey authenticity. J Chromatogr A 1021(1–2):145–155. https://doi.org/10.1016/j.chroma.2003.09.005

    Article  CAS  PubMed  Google Scholar 

  10. Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch E (2007) A review of volatile analytical methods for determining the botanical origin of honey. Food Chem 103(3):1032–1043. https://doi.org/10.1016/j.foodchem.2006.07.068

    Article  CAS  Google Scholar 

  11. da Silva PM, Gauche C, Gonzaga LV, Costa ACO, Fett R (2016) Honey: chemical composition, stability and authenticity. Food Chem 196:309–323. https://doi.org/10.1016/j.foodchem.2015.09.051

    Article  CAS  PubMed  Google Scholar 

  12. Dobre I, Georgescu LA, Alexe P, Escuredo O, Seijo MC (2012) Rheological behavior of different honey types from Romania. Food Res Int 49(1):126–132. https://doi.org/10.1016/j.foodres.2012.08.009

    Article  CAS  Google Scholar 

  13. Dyce EJ (1975) Producing finely granulated or creamed honey. In: Crane E (ed) Honey—a comprehensive survey. Heinemann, London, pp 293–306

    Google Scholar 

  14. Ecem Bayram N, Gerçek YC, Bayram S, Toğar B (2020) Effects of processing methods and extraction solvents on the chemical content and bioactive properties of propolis. J Food Meas Charact 14:905–916. https://doi.org/10.1007/s11694-019-00340-z

    Article  Google Scholar 

  15. Ecem Bayram N, Gerçek YC, Öz G (2020) Screening for antioxidant capacity, pollen types and phytochemical profile by GC/MS and UHPLC from propolis. Prog Nutr 22(3):1–10

    Google Scholar 

  16. Escuredo O, Dobre I, Fernández-González M, Seijo MC (2014) Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem 149:84–90. https://doi.org/10.1016/j.foodchem.2013.10.097

    Article  CAS  PubMed  Google Scholar 

  17. Finola MS, Lasagno MC, Marioli JM (2007) Microbiological and chemical characterization of honeys from central Argentina. Food Chem 100(4):1649–1653. https://doi.org/10.1016/j.foodchem.2005.12.046

    Article  CAS  Google Scholar 

  18. Grégrová A, Kružík V, Vrácovská E, Rajchl A, Čížková H (2015) Evaluation of factors affecting crystallization of disparate set of multi-flower honey samples. Agron Res 13(5):1215–1226

    Google Scholar 

  19. Hermosı́n I, Chicon RM, Cabezudo MD (2003) Free amino acid composition and botanical origin of honey. Food Chem 83(2):263–268. https://doi.org/10.1016/s0308-8146(03)00089-x

    Article  Google Scholar 

  20. International Honey Commission (IHC) (2009) Harmonised Methods of the International Honey Commission. http://www.ihc-platform.net/ihcmethods2009.pdf. Acessed 16 Jan 2020

  21. Ji P, Liu X, Yang C, Wu F, Sun J, Cao W, Zhao H (2023) Natural crystallization properties of honey and seed crystals-induced crystallization process for honey performance enhancing. Food Chem 405:134972. https://doi.org/10.1016/j.foodchem.2022.134972

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan M, Karaoglu Ö, Eroglu N, Silici S (2016) Fatty acid and proximate composition of bee bread. Food Technol Biotechnol 54(4):497–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kaškonienė V, Venskutonis PR, Čeksterytė V (2010) Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. LWT Food Sci Technol 43(5):801–807. https://doi.org/10.1016/j.lwt.2010.01.007

    Article  CAS  Google Scholar 

  24. Keskin M, Kolaylı S (2019) Ticari propolis ekstraktlarının kalite parametreleri açısından karşılaştırılması. Uludag Bee J 19(1):43–49

    Google Scholar 

  25. Manikis I, Thrasivoulou A (2001) The relation of physicochemical characteristics of honey and the crystallization sensitive parameters. Apiacta 36(2):106–112

    Google Scholar 

  26. Mayda N, Özkök A, Sorkun K (2018) Some characteristic properties of chestnut and rhododendron honeys in Turkey. Hacettepe J Biol Chem 46(1):135–145

    Article  Google Scholar 

  27. Nayik GA, Dar BN, Nanda V (2019) Physico-chemical, rheological and sugar profile of different unifloral honeys from Kashmir valley of India. Arab J Chem 12(8):3151–3162. https://doi.org/10.1016/j.arabjc.2015.08.017

    Article  CAS  Google Scholar 

  28. Oddo LP, Bogdanov S (2004) Determination of honey botanical origin: problems and issues. Apidologie 35(1):2–3. https://doi.org/10.1051/apido:2004044

    Article  Google Scholar 

  29. Oddo LP, Piro R, Bruneau É, Guyot-Declerck C, Ivanov T, Piskulová J, Ruoff K (2004) Main European unifloral honeys: descriptive sheets. Apidologie 35(1):38–81. https://doi.org/10.1051/apido:2004049

    Article  Google Scholar 

  30. Overton SV, Manura JJ (1994) Flavor and aroma in commercial bee honey: a purge-and-trap thermal desorption technique for the identification and quantification of volatiles and semivolatiles in honey. Am Lab 26(6):45–45

    CAS  Google Scholar 

  31. Özkök D, Silici S (2018) Effects of crystallization on antioxidant property of honey. J Apither 3(2):24–30. https://doi.org/10.5455/ja.20180607113134

    Article  Google Scholar 

  32. Pasias IN, Raptopoulou KG, Makrigennis G, Ntakoulas DD, Lembessis D, Dimakis V, Katsinas R, Proestos C (2022) Finding the optimum treatment procedure to delay honey crystallization without reducing its quality. Food Chem 381:132301. https://doi.org/10.1016/j.foodchem.2022.132301

    Article  CAS  PubMed  Google Scholar 

  33. Persano Oddo L, Piazza MG, Sabatini AG, Accorti M (1995) Characterization of unifloral honeys. Apidologie 26(6):453–465. https://doi.org/10.1051/apido:19950602

    Article  Google Scholar 

  34. Radovic BS, Careri M, Mangia A, Musci M, Gerboles M, Anklam E (2001) Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey. Food Chem 72(4):511–520. https://doi.org/10.1016/s0308-8146(00)00263-6

    Article  CAS  Google Scholar 

  35. Sakač MB, Jovanov PT, Marić AZ, Pezo LL, Kevrešan ŽS, Novaković AR, Nedeljković NM (2019) Physicochemical properties and mineral content of honey samples from Vojvodina (Republic of Serbia). Food Chem 276:15–21. https://doi.org/10.1016/j.foodchem.2018.09.149

    Article  CAS  PubMed  Google Scholar 

  36. Sanz ML, Gonzalez M, De Lorenzo C, Sanz J, Martınez-Castro I (2005) Acontribution to the differentiation between nectar honey and honeydew honey. Food Chem 91(2):313–317. https://doi.org/10.1016/j.foodchem.2004.06.013

    Article  CAS  Google Scholar 

  37. Scholz MBDS, Quinhone Júnior A, Delamuta BH, Nakamura JM, Baudraz MC, Reis MO, Kato T, Pedrão MR, Bianchini FP, Dias LF, dos Santos DTR, Kitzberger CSG, Binachini FP (2020) Indication of the geographical origin of honey using its physicochemical characteristics and multivariate analysis. J Food Sci Technol 57(5):1896–1903. https://doi.org/10.1007/s13197-019-04225-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serra Bonvehi J (1988) Propriétés physico-chimiques, composition et spectre pollinique des miels de Lavandula latifolia Med produits en Espagne. Sci Des Alim 8(2):295–307

    Google Scholar 

  39. Singh I, Singh S (2018) Honey moisture reduction and its quality. J Food Sci Technol 55(10):3861–3871. https://doi.org/10.1007/s13197-018-3341-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smanalieva J, Senge B (2009) Analytical and rheological investigations into selected unifloral German honey. Eur Food Res Technol 229(1):107–113. https://doi.org/10.1007/s00217-009-1031-2

    Article  CAS  Google Scholar 

  41. Sorkun K (2008) Türkiye’nin Nektarlı bitkileri, polenleri ve balları. Palme Publisher, Ankara, Türkiye

  42. The Council of the European Union (2002) Council directive 2001/110/EC of 20 December 2001 relating to honey. Off J Eur Commun L10:47–52

    Google Scholar 

  43. Tosi EA, Ré E, Lucero H, Bulacio L (2004) Effect of honey high-temperature short-time heating on parameters related to quality, crystallisation phenomena and fungal inhibition. LWT Food Sci Technol 37(6):669–678. https://doi.org/10.1016/j.lwt.2004.02.005

    Article  CAS  Google Scholar 

  44. Turkish Food Codex (2020) Turkish Food Codex Communiqué on Honey (No: 2020/7). https://www.resmigazete.gov.tr/eskiler/2020/04/20200422-13.htm. Accesed 20 Apr 2020

  45. Venir E, Spaziani M, Maltini E (2010) Crystallization in “Tarassaco” Italian honey studied by DSC. Food Chem 122(2):410–415. https://doi.org/10.1016/j.foodchem.2009.04.012

    Article  CAS  Google Scholar 

  46. Wen YQ, Zhang J, Li Y, Chen L, Zhao W, Zhou J, Jin Y (2017) Characterization of Chinese unifloral honeys based on proline and phenolic content as markers of botanical origin, using multivariate analysis. Molecules 22(5):735. https://doi.org/10.3390/molecules22050735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. White JW Jr (1978) Honey, advances in food research, New York, San Francisco, vol 24. Board Academic Press, London, pp 287–374

    Google Scholar 

  48. White JW Jr (1980) Detection of honey adulteration by carbohydrate analysis. J Assoc Off Anal Chem 63(1):11–18. https://doi.org/10.1093/jaoac/63.1.11

    Article  CAS  PubMed  Google Scholar 

  49. Yücel B, Sahin H, Yıldız O, Kolaylı S (2019) Bioactive components and effect mechanism of Apilarnil. Hayvansal Üretim 60(2):125–130

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Tokat Beekeepers’ Association for honey samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nesrin Ecem Bayram.

Ethics declarations

Conflict of interest

There are no conficts to declare.

Compliance with ethics requirements

This article does not contain any studies with human and animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ecem Bayram, N. Nectar honey from Turkey: crystallization and physicochemical profile. Eur Food Res Technol 249, 1049–1057 (2023). https://doi.org/10.1007/s00217-022-04194-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04194-6

Keywords

Navigation