Skip to main content
Log in

Comparing the morphological characteristics and nutritional composition of 23 pepper (Capsicum annuum L.) varieties

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Here, 23 pepper varieties (Capsicum annuum L.) were used in the evaluation of morphological, agronomic, and nutritional characteristics to support breeding, protection, and management of genetic resources. In this study, diversity analysis, variance analysis, principal component analysis (PCA), and correlation analysis were used to analyze the data obtained. The results showed that shoulder diameter, flesh thickness, single fruit weight, transverse diameter, fruit shape index, and ventricular number variability were > 20% across all varieties. The maximum diversity index for the ventricular number and single fruit weight were 1.492 and 1.2, respectively. The soluble sugar content ranged 1.6–2.7%, whereas the titratable organic acid content varied 0.2–0.4% and the soluble protein content ranged 8.4–20.1 mg g−1 FW. The range of nitric acid content was 147.5–547.7 mg kg−1, while citric, malic, and tartaric organic acids were the most dominant. The range of ascorbic acid content was 331.4–125.2 µg g−1 FW. Concentrations of capsaicin and dihydrocapsaicin varied greatly, ranging 3.5–39.9 mg 100 g−1 DW and 1.4–25.9 mg 100 g−1 DW, respectively. Principal component analysis showed that the P3 and P10 varieties clustered together in morphological, agronomic, and nutritional trait space, while the P2, P4, P12, and P16 varieties clustered based on nutritional traits. These morphological and nutritional characteristics can be used in pepper breeding to create new varieties and provide more choices for producers and consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

All created data has been included in this document and supplementary files.

References

  1. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278. https://doi.org/10.1038/ng.2877

    Article  CAS  PubMed  Google Scholar 

  2. Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Xu M, Luo Y et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140. https://doi.org/10.1073/pnas.1400975111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Sá Mendes N, de Branco ÉCB (2020) The role of bioactive components found in peppers. Trends Food Sci Technol 99:229–243. https://doi.org/10.1016/j.tifs.2020.02.032

    Article  CAS  Google Scholar 

  4. Baenas N, Belović M, Ilic N, Moreno DA, García-Viguera C (2019) Industrial use of pepper (Capsicum annum L.) derived products: technological benefits and biological advantages. Food Chem 274:872–885. https://doi.org/10.1016/j.foodchem.2018.09.047

    Article  CAS  PubMed  Google Scholar 

  5. Bayili RG, Abdoul-Latif F, Kone OH, Diao M, Bassole IH, Dicko MH (2011) Phenolic compounds and antioxidant activities in some fruits and vegetables from Burkina Faso. Afr J Biotechnol 10:13543–13547

    CAS  Google Scholar 

  6. Kaur C, Kapoor HC (2001) Antioxidants in fruits and vegetables—the millennium’s health. Int J Food Sci Technol 36:703–725. https://doi.org/10.1046/j.1365-2621.2001.00513.x

    Article  CAS  Google Scholar 

  7. Guil-Guerrero JL, Martínez-Guirado C, del Mar Rebolloso-Fuentes M, Carrique-Pérez A (2006) Nutrient composition and antioxidant activity of 10 pepper (Capsicum annuun) varieties. Eur Food Res Technol 224:1–9. https://doi.org/10.1007/s00217-006-0281-5

    Article  CAS  Google Scholar 

  8. Wahyuni Y, Ballester AR, Sudarmonowati E, Bino RJ, Bovy AG (2011) Metabolite biodiversity in pepper (Capsicum) fruits of thirty-two diverse accessions: variation in health-related compounds and implications for breeding. Phytochemistry 72:1358–1370. https://doi.org/10.1016/j.phytochem.2011.03.016

    Article  CAS  PubMed  Google Scholar 

  9. Naves ER, de Ávila Silva L, Sulpice R, Araújo WL, Nunes-Nesi A, Peres LEP, Zsögön A (2019) Capsaicinoids: pungency beyond Capsicum. Trends Plant Sci 24:109–120. https://doi.org/10.1016/j.tplants.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  10. Guzmán I, Bosland PW (2017) Sensory properties of chile pepper heat—and its importance to food quality and cultural preference. Appetite 117:186–190. https://doi.org/10.1016/j.appet.2017.06.026

    Article  PubMed  Google Scholar 

  11. Batiha GE-S, Alqahtani A, Ojo OA, Shaheen HM, Wasef L, Elzeiny M, Ismail M, Shalaby M, Murata T, Zaragoza-Bastida A et al (2020) Biological properties, bioactive constituents, and pharmacokinetics of some Capsicum spp. and capsaicinoids. Int J Mol Sci 21:5179. https://doi.org/10.3390/ijms21155179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Singh S, Jarret R, Russo V, Majetich G, Shimkus J, Bushway R, Perkins B (2009) Determination of capsinoids by HPLC-DAD in Capsicum species. J Agric Food Chem 57:3452–3457. https://doi.org/10.1021/jf8040287

    Article  CAS  PubMed  Google Scholar 

  13. De AK (2003) Capsicum: the genus Capsicum. CRC Press

    Google Scholar 

  14. Garcés-Claver A, Arnedo-Andrés MS, Abadía J, Gil-Ortega R, Álvarez-Fernández A (2006) Determination of capsaicin and dihydrocapsaicin in Capsicum fruits by liquid chromatography—electrospray/time-of-flight mass spectrometry. J Agric Food Chem 54:9303–9311. https://doi.org/10.1021/jf0620261

    Article  CAS  PubMed  Google Scholar 

  15. Ananthan R, Subhash K, Longvah T (2018) Capsaicinoids, amino acid and fatty acid profiles in different fruit components of the world hottest Naga king chilli (Capsicum chinense Jacq). Food Chem 238:51–57. https://doi.org/10.1016/j.foodchem.2016.12.073

    Article  CAS  PubMed  Google Scholar 

  16. Materska M, Perucka I (2005) Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L). J Agric Food Chem 53:1750–1756. https://doi.org/10.1021/jf035331k

    Article  CAS  PubMed  Google Scholar 

  17. Liu J, Liu H, Zhao Z, Wang J, Guo D, Liu Y (2020) Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson’s disease. Biosci Rep. https://doi.org/10.1042/BSR20191796

  18. Strickman D (2014) Neuromolecular basis of repellent action. Insect repellents handbook. CRC Press, pp 48–59

    Google Scholar 

  19. Li B, Yang M, Shi R, Ye M (2019) Insecticidal activity of natural capsaicinoids against several agricultural insects. Nat Prod Commun. https://doi.org/10.1177/1934578X19862695

    Article  Google Scholar 

  20. Aley JP, Adams NJ, Ladyman RJ, Fraser DL (2015) The efficacy of capsaicin as an equine repellent for chewing wood. J Vet Behav 10:243–247. https://doi.org/10.1016/j.jveb.2015.03.001

    Article  Google Scholar 

  21. Palma JM, Sevilla F, Jiménez A, del Río LA, Corpas FJ, de Álvarez Morales P, Camejo DM (2015) Physiology of pepper fruit and the metabolism of antioxidants: chloroplasts, mitochondria and peroxisomes. Ann Bot 116:627–636. https://doi.org/10.1093/aob/mcv121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song W, Derito CM, Liu MK, He X, Dong M, Liu RH (2010) Cellular antioxidant activity of common vegetables. J Agric Food Chem 58:6621–6629. https://doi.org/10.1021/jf9035832

    Article  CAS  PubMed  Google Scholar 

  23. da Silveira Agostini-Costa T, da SilvaGomes I, de Melo LAMP, Reifschneider FJB, da CostaRibeiro CS (2017) Carotenoid and total vitamin C content of peppers from selected Brazilian cultivars. J Food Compos Anal 57:73–79. https://doi.org/10.1016/j.jfca.2016.12.020

    Article  CAS  Google Scholar 

  24. Casella IG, Gatta M (2002) Determination of aliphatic organic acids by high-performance liquid chromatography with pulsed electrochemical detection. J Agric Food Chem 50:23–28. https://doi.org/10.1021/jf010557d

    Article  CAS  PubMed  Google Scholar 

  25. Antonious G (2017) Diversity in capsaicin and dihydrocapsaicin content in hot pepper genotypes. J Environ Sci Ecol 5:1042

    Google Scholar 

  26. Gurung T, Techawongstien S, Suriharn B, Techawongstien S (2011) Impact of environments on the accumulation of capsaicinoids in Capsicum spp. Hortic Sci 46:1576–1581. https://doi.org/10.21273/HORTSCI.46.12.1576

    Article  CAS  Google Scholar 

  27. Li H, Sun Q, Zhao S, Zhang W (2000) Principles and techniques of plant physiological biochemical experiment. Higher Education, Beijing, pp 195–197

    Google Scholar 

  28. Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552. https://doi.org/10.1016/0003-2697(77)90428-6

    Article  CAS  PubMed  Google Scholar 

  29. Cataldo DA, Maroon M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80. https://doi.org/10.1080/00103627509366547

    Article  CAS  Google Scholar 

  30. Wang S, Jin N, Jin L, Xiao X, Hu L, Liu Z, Wu Y, Xie Y, Zhu W, Lyu J et al (2022) Response of tomato fruit quality depends on period of LED supplementary light. Front Nutr 9:833723. https://doi.org/10.3389/fnut.2022.833723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin N, Jin L, Luo S, Tang Z, Liu Z, Wei S, Liu F, Zhao X, Yu J, Zhong Y (2021) Comprehensive evaluation of amino acids and polyphenols in 69 varieties of green cabbage (Brassica oleracea L. var. capitata L.) based on multivariate statistical analysis. Molecules 26:5355. https://doi.org/10.3390/molecules26175355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tripodi P, Kumar S (2019) The Capsicum crop: an introduction compendium of plant genomes. The Capsicum genome. Springer, pp 1–8. https://doi.org/10.1007/978-3-319-97217-6_1

    Book  Google Scholar 

  33. Stommel JR, Whitaker BD, Haynes KG, Prohens J (2015) Genotype× environment interactions in eggplant for fruit phenolic acid content. Euphytica 205:823–836. https://doi.org/10.1007/s10681-015-1415-2

    Article  CAS  Google Scholar 

  34. Tripodi P, Cardi T, Bianchi G, Migliori CA, Schiavi M, Rotino GL, Lo Scalzo R (2018) Genetic and environmental factors underlying variation in yield performance and bioactive compound content of hot pepper varieties (Capsicum annuum) cultivated in two contrasting Italian locations. Eur Food Res Technol 244:1555–1567. https://doi.org/10.1007/s00217-018-3069-5

    Article  CAS  Google Scholar 

  35. Alizadeh K, Fatholahi S, da Teixeira Silva JA (2015) Variation in the fruit characteristics of local pear (Pyrus spp.) in the Northwest of Iran. Genet Resour Crop Evol 62:635–641. https://doi.org/10.1007/s10722-015-0241-7

    Article  CAS  Google Scholar 

  36. Tripodi P, Schiavi M, Lo Scalzo R (2021) Multi-scale evaluation on two locations and digital fruit imaging highlight morpho-agronomic performances and antioxidant properties in chilli pepper hybrids. Agronomy 11:805. https://doi.org/10.3390/agronomy11040805

    Article  CAS  Google Scholar 

  37. Rosa-Martínez E, García-Martínez MD, Adalid-Martínez AM, Pereira-Dias L, Casanova C, Soler E, Figàs MR, Raigón MD, Plazas M, Soler S et al (2021) Fruit composition profile of pepper, tomato and eggplant varieties grown under uniform conditions. Food Res Int 147:110531. https://doi.org/10.1016/j.foodres.2021.110531

    Article  CAS  PubMed  Google Scholar 

  38. Tripodi P, Ficcadenti N, Rotino GL, Festa G, Bertone A, Pepe A, Caramanico R, Migliori CA, Spadafora D, Schiavi M et al (2019) Genotypic and environmental effects on the agronomic, health-related compounds and antioxidant properties of chilli peppers for diverse market destinations. J Sci Food Agric 99:4550–4560. https://doi.org/10.1002/jsfa.9692

    Article  CAS  PubMed  Google Scholar 

  39. Zhang B, Cai Z, Shen Z, Yan J, Ma R, Yu M (2021) Diversity analysis of phenotypic characters in germplasm resources of ornamental peaches. Sci Agric Sin 54:2406–2418

    Google Scholar 

  40. Upadhyaya HD, Reddy KN, Gowda CLL, Singh S (2007) Phenotypic diversity in the pigeonpea (Cajanus cajan) core collection. Genet Resour Crop Evol 54:1167–1184. https://doi.org/10.1007/s10722-006-9008-5

    Article  Google Scholar 

  41. Petruccelli R, Ganino T, Ciaccheri L, Maselli F, Mariotti P (2013) Phenotypic diversity of traditional cherry accessions present in the Tuscan region. Sci Hortic 150:334–347. https://doi.org/10.1016/j.scienta.2012.11.034

    Article  Google Scholar 

  42. Krishnamurthy P, Lee JM, Tsukamoto C, Takahashi Y, Singh RJ, Lee JD, Chung G (2014) Evaluation of genetic structure of Korean wild soybean (Glycine soja) based on saponin allele polymorphism. Genet Resour Crop Evol 61:1121–1130. https://doi.org/10.1007/s10722-014-0095-4

    Article  CAS  Google Scholar 

  43. Denev P, Todorova V, Ognyanov M, Georgiev Y, Yanakieva I, Tringovska I, Grozeva S, Kostova D (2019) Phytochemical composition and antioxidant activity of 63 Balkan pepper (Capsicum annuum L.) accessions. J Food Meas Char 13:2510–2520. https://doi.org/10.1007/s11694-019-00171-y

    Article  Google Scholar 

  44. Jarret RL, Berke T, Baldwin EA, Antonious GF (2009) Variability for free sugars and organic acids in Capsicum chinense. Chem Biodivers 6:138–145. https://doi.org/10.1002/cbdv.200800046

    Article  CAS  PubMed  Google Scholar 

  45. Bhandari SR, Jung B-D, Baek H-Y, Lee Y-S (2013) Ripening-dependent changes in phytonutrients and antioxidant activity of red pepper (Capsicum annuum L.) fruits cultivated under open-field conditions. HortScience 48:1275–1282. https://doi.org/10.21273/HORTSCI.48.10.1275

    Article  CAS  Google Scholar 

  46. Hwang IG, Yoo SM, Lee J (2014) Quality characteristics of red pepper cultivars according to cultivation years and regions. Korean J Food Nutr 27:817–825. https://doi.org/10.9799/ksfan.2014.27.5.817

    Article  Google Scholar 

  47. Luning P (1995) Characterisation of the flavour of fresh bell peppers (Capsicum annuum) and its changes after hot-air drying; an instrumental and sensory evaluation. Wageningen University and Research

    Google Scholar 

  48. Rodríguez-Ruiz M, Mateos RM, Codesido V, Corpas FJ, Palma JM (2017) Characterization of the galactono-1, 4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide. Redox Biol 12:171–181. https://doi.org/10.1016/j.redox.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Perla V, Nimmakayala P, Nadimi M, Alaparthi S, Hankins GR, Ebert AW, Reddy UK (2016) Vitamin C and reducing sugars in the world collection of Capsicum baccatum L. genotypes. Food Chem 202:189–198. https://doi.org/10.1016/j.foodchem.2016.01.135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chávez-Mendoza C, Sanchez E, Muñoz-Marquez E, Sida-Arreola JP, Flores-Cordova MA (2015) Bioactive compounds and antioxidant activity in different grafted varieties of bell pepper. Antioxidants (Basel) 4:427–446. https://doi.org/10.3390/antiox4020427

    Article  CAS  PubMed  Google Scholar 

  51. Leonardi C, Giuffrida F (2006) Variation of plant growth and macronutrient uptake in grafted tomatoes and eggplants on three different rootstocks. Eur J Hortic Sci 71:97

    CAS  Google Scholar 

  52. Petersen A, Stoltze S (1999) Nitrate and nitrite in vegetables on the Danish market: content and intake. Food Addit Contam 16:291–299. https://doi.org/10.1080/026520399283957

    Article  CAS  PubMed  Google Scholar 

  53. Whiting S, Derbyshire E, Tiwari BK (2012) Capsaicinoids and capsinoids. A potential role for weight management? A systematic review of the evidence. Appetite 59:341–348. https://doi.org/10.1016/j.appet.2012.05.015

    Article  CAS  PubMed  Google Scholar 

  54. Lu M, Ho CT, Huang Q (2017) Extraction, bioavailability, and bioefficacy of capsaicinoids. J Food Drug Anal 25:27–36. https://doi.org/10.1016/j.jfda.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  55. Gurung T, Techawongstien S, Suriharn B, Techawongstien S (2012) Stability analysis of yield and capsaicinoids content in chili (Capsicum spp.) grown across six environments. Euphytica 187:11–18. https://doi.org/10.1007/s10681-012-0672-6

    Article  Google Scholar 

  56. Butcher JD, Crosby KM, Yoo KS, Patil BS, Ibrahim AMH, Leskovar DI, Jifon JL (2012) Environmental and genotypic variation of capsaicinoid and flavonoid concentrations in Habanero (Capsicum chinense) peppers. Hortic Sci 47:574–579. https://doi.org/10.21273/HORTSCI.47.5.574

    Article  CAS  Google Scholar 

  57. Aliu SA, Rusinovci I, Fetahu S, Kaçiu S, Zeka D (2017) Assessment of morphological variability and chemical composition of some local pepper (Capsicum annuum L.) populations on the area of Kosovo. Acta Agric Slov 109:205–213. https://doi.org/10.14720/aas.2017.109.2.05

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding for this research from the Modern Silk Road Cold and Arid Agriculture Science and Technology Support Project (GSLK-2021-6); the Special Project of Central Government Guiding Local Science and Technology Development (ZCYD-2021-07); Gansu Top Leading Talent Plan (GSBJLJ-2021-14); Gansu Provincial Education Department Industrial Support Plan Project (2021CYZC-45); Fuxi Young Talents Fund of Gansu Agricultural University (GAUfx-04Y03); Gansu People’s Livelihood Science and Technology Project (20CX9NA099); Gansu Provincial Outstanding PhD Student Project (22JR5RA842).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Lyu, Yuan Zhong or Jihua Yu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Jin, N., Wang, S. et al. Comparing the morphological characteristics and nutritional composition of 23 pepper (Capsicum annuum L.) varieties. Eur Food Res Technol 249, 963–974 (2023). https://doi.org/10.1007/s00217-022-04187-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-04187-5

Keywords

Navigation