Skip to main content

Advertisement

Log in

Processing techniques and microbial fermentation on microbial profile and chemical and sensory quality of the coffee beverage

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Post-harvest processing and microbial fermentation of coffee fruits play an essential role in the metabolites formation that influence the nutritional and sensory quality of the beverage. Thus, the objective of this study was to analyze the effect of coffee cherries processing and fermentation conditions on the microbial communities and the chemical and sensory quality of the beverage. Induced fermentation changed in the bacteria and fungi communities (Treatments: T1, T3, and T7). Klebsiella sp. inoculation (T1) allowed an increase in richness of bacteria and 81 points in the sensory score over the fermentation time. However, there was a reduction in richness of microbial community in treatments with Saccharomyces cerevisiae (T3 and T7). An increase in the indexes of microbial diversity was observed in 72 h in treatment with coffee pulp (T2). In treatment with coffee cherries and spontaneous fermentation (T4) had a higher sensory score than other treatments, indicating a sensory gain from 36 to 72 h. Coffee cherries with superficial disinfection (T5) had a reduction in microbial profile, but did not change the final score of the beverage over the 72 h. In T6 (floaters fruits) was observed an alteration in the fungal community (36–72 h) and the lowest sensory score. The impact of adding water on coffee fermentation was dependent on time (T3 and T7). Furthermore, 5-hydroxymethylfurfural has a positive correlation with the final score of the beverage. Thus, microbial profile and sensory score of beverages are dependent of conditions of processing of coffee fruits and fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maghuly F, Jankowicz-Cieslak J, Bado S (2020) Improving coffee species for pathogen resistance. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 15:9. https://doi.org/10.1079/pavsnnr202015009

    Article  CAS  Google Scholar 

  2. Evangelista SR, Miguel MGCP, Silva CF, Schwana RF (2015) Microbiological diversity associated with the spontaneous wet method of coffee fermentation. Int J Food Microbiol 210:102–112. https://doi.org/10.1016/j.ijfoodmicro.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  3. Brioschi Junior D, Guarçoni RC, Silva MCS, Veloso TGR, Kasuya MCM, Oliveira ECS, Luz JMR, Moreira TR, Debona DGD, Pereira LL (2020) Microbial fermentation affects sensorial, chemical, and microbial profile of coffee under carbonic maceration. Food Chem 342:128–296. https://doi.org/10.1016/j.foodchem.2020.128296

    Article  CAS  Google Scholar 

  4. Evangelista SR, Silva CF, Miguel MGP, Cordeiro C, Pinheiro ACM, Duarte WF, Schwan RF (2014) Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Res Int 61:183–195. https://doi.org/10.1016/j.foodres.2013.11.033

    Article  CAS  Google Scholar 

  5. De Bruyn F, Zhang SJ, Pothakos V, Torres J, Lambot C, Moroni AV (2017) Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Appl Environ Microbiol 83(1):e02398-e2416. https://doi.org/10.1128/AEM.02398-16

    Article  PubMed  Google Scholar 

  6. Pereira VMG, Vale AS, Neto DPC, Muynarsk ESM, Soccol VT, Soccol CR (2020) Lactic acid bacteria: what coffee industry should know? Curr Opin Food Sci 31:1–8. https://doi.org/10.1016/j.cofs.2019.07.004

    Article  Google Scholar 

  7. Veloso TGR, da Silva MCS, Cardoso WS, Guarçoni RC, Kasuya MCM, Pereira LL (2020) The effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil. Sci Rep 1:11. https://doi.org/10.1038/s41598-020-71309-y%3e

    Article  Google Scholar 

  8. Silva CF, Schwan RF, Dias ES, Wheals E (2000) Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. Int J Food Microbiol 60(3):251–260. https://doi.org/10.1016/S0168-1605(00)00315-9

    Article  Google Scholar 

  9. Silva CF, Batista LR, Abreu LM, Dias ES, Schwan RF (2008) Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiol 25:951–957. https://doi.org/10.1016/j.fm.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  10. Neto DPC, Pereira VMG, Carvalho J, Soccol VT, Soccol CR (2018) High-throughput rRNA gene sequencing reveals high and complex bacterial diversity associated with Brazilian coffee bean fermentation. Food Technol Biotechnol 56(1):90–95. https://doi.org/10.17113/ftb.56.01.18.5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nasanit R, Satayawut K (2015) Microbiological study during coffee fermentation of Coffea arabica var. chiangmai 80 in Thailand. Kasetsart J Nat Sci 49:32–41

    Google Scholar 

  12. Pereira VMG, Soccol VT, Brar SK, Neto E, Soccol CR (2017) Microbial ecology and starter culture technology in coffee processing. Crit Rev Food Sci Nutr 57(13):2775–2788. https://doi.org/10.1080/10408398.2015.1067759

    Article  CAS  Google Scholar 

  13. Wang C, Sun J, Lassabliere B, Yu B, Zhao F, Zhao F, Chen Y, Liu SQ (2019) Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: fermentation of green coffee beans and impact of coffee roasting. J Sci Food Agric 99:409–420. https://doi.org/10.1002/jsfa.9202

    Article  CAS  PubMed  Google Scholar 

  14. Wang C, Sun J, Lassabliere B, Yu B, Liu SQ (2020) Coffee flavour modification through controlled fermentation of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: part II. Mixed cultures with or without lactic acid bacteria. Food Res Int 136:109452. https://doi.org/10.1016/j.foodres.2020.109452%3e

    Article  CAS  PubMed  Google Scholar 

  15. Pereira LL, Guarçoni RC, Pinheiro PF, Osório VM, Pinheiro CA, Moreira TR, Schwengber C (2020) New propositions about coffee wet processing: chemical and sensory perspectives. Food Chem 310:125943. https://doi.org/10.1016/j.foodchem.2019.125943

    Article  CAS  PubMed  Google Scholar 

  16. Conama-Conselho nacional de meio ambiente, Brazil. (2005). Resolution number 357 (in portuguese: Resolução número 357), Diário Oficial da União, pp 58–63

  17. White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, New York, USA

    Book  Google Scholar 

  18. Turenne CY, Sanche SE, Hoban DJ, Karlowsky JA, Kabani AM (1999) Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J Clin Microbiol 37:1846–1851. https://doi.org/10.1128/JCM.37.6.1846-1851.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  20. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    Article  CAS  Google Scholar 

  21. Pereira LL, Brioschi Júnior D, Sousa LBP, Gomes WS, Cardoso WS, Guarçoni RC, Caten CST (2021). In: Pereira LL, Moreira TR (eds) Quality Determinants In Coffee production. Food engineering series. Springer, Cham

    Chapter  Google Scholar 

  22. Debona DG, Oliveira ECS, Ten Caten CS, Guarçoni RC, Moreira TR, Moreli AP, Pereira LL (2021) Sensory analysis and mid-infrared spectroscopy for discriminating roasted specialty coffees. Coffee Sci 16:e161878. https://doi.org/10.25186/.v16i.1878

    Article  Google Scholar 

  23. Pereira LL, Guarçoni RC, Souza GS, Junior DB, Moreira TR, Schwengber C (2018). Propositions on the optimal number of Q-graders and R-grades. J Food Qual 3285452. https://doi.org/10.1155/2018/3285452

  24. SCAA. Specialty Coffee Association of America (2013). SCAA protocols cupping specialty coffee. Specialty Coffee Association of America, pp 1–10. http://www.scaa.org/PDF/resources/cupping-protocols.pdf

  25. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  26. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) Vegan: community Ecology Package. R package version 2.5-6

  27. Alzola CF, Harrell FE. (2004). An introduction to s and the hmisc and design libraries at http://biostat.mc.vanderbilt.edu/twiki/pub/main/rs/sintro.pdf for extensive documentation and examples for the Hmisc package

  28. Durand N, Sheikha AFE, Suarez-Quiros ML, Oscar GR, Nganou ND, Fontana-Tachon A, Montet D (2013) Application of PCR-DGGE to the study of dynamics and biodiversity of yeasts and potentially OTA producing fungi during coffee processing. Food Control 34(2):466–471. https://doi.org/10.1016/j.foodcont.2013.05.017

    Article  CAS  Google Scholar 

  29. Hamdouche Y, Meile JC, Nganou DN, Durand N, Teyssier C, Montet D (2016) Discrimination of post-harvest coffee processing methods by microbial ecology analyses. Food Control 65:112–120. https://doi.org/10.1016/j.foodcont.2016.01.022

    Article  CAS  Google Scholar 

  30. Bertrand B, Vaast P, Alpizar E, Etienne H, Davrieux F, Charmetant P (2006) Comparison of bean biochemical composition and beverage quality of Arabica hybrids involving Sudanese-Ethiopian origins with traditional varieties at various elevations in Central America. Tree Physiol 26:1239–1248. https://doi.org/10.1093/treephys/26.9.1239

    Article  CAS  PubMed  Google Scholar 

  31. Pinheiro PF, Pinheiro CA, Osório VM, Pereira LL (2021) Chemical constituents of coffee. In: Pereira LL, Moreira TR (eds) Quality determinants in coffee production. Food engineering series. Springer, Cham

    Google Scholar 

  32. Batista LR, Chalfou SM (2007) Incidence of ochratoxin A in fraction different coffee beans (Coffea arabica L): “boia”, mixes and “varrição.” Ciênc Agrotec 31(3):804–813. https://doi.org/10.1590/S1413-70542007000300030

    Article  CAS  Google Scholar 

  33. Souza ML, Ribeiro LS, Miguel MGCP, Batista LR, Schwan RF, Medeiros FH, Silva CF (2021) Yeasts prevent ochratoxin A contamination in coffee by displacing Aspergillus carbonarius. Biol Control 155:104512. https://doi.org/10.1016/j.biocontrol.2020.104512

    Article  CAS  Google Scholar 

  34. Avallone S, Brillouet JM, Guyot B, Olguin E, Guiraud JP (2002) Involvement of pectinolytic microorganisms is coffee fermentation. Int J Food Sci Technol 37:191–198. https://doi.org/10.1046/j.1365-2621.2002.00556.x

    Article  CAS  Google Scholar 

  35. Tkacz K, Chmielewska J, Turkiewicz IP, Nowicka P, Wojdyłoa A (2020) Dynamics of changes in organic acids, sugars and phenolic compounds and antioxidant activity of sea buckthorn and sea buckthorn-apple juices during malolactic fermentation. Food Chem 332:127382. https://doi.org/10.1016/j.foodchem.2020.127382

    Article  CAS  PubMed  Google Scholar 

  36. Feng X, Jiang L, Han X, Liu X, Zhao Z, Liu H, Xian M, Zhao G (2017) Production of D-lactate from glucose using Klebsiella pneumoniae mutants. Microb Cell Fact 16:209. https://doi.org/10.1186/s12934-017-0822-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbosa KL, Santos M, Rodrigues V, Machado SS, Gildemberg Junior AL, Silva APV, Almeida RMRG, Da Luz JMR (2020) Bacterial cellulase from the intestinal tract of the sugarcane borer. Int J Biol Macromol 161:441–448. https://doi.org/10.1016/j.ijbiomac.2020.06.042

    Article  CAS  PubMed  Google Scholar 

  38. Abdel-Aziz M, Atallah AG, Abdel-Aal SK, Mohamed EA, Ibrahim SA, Zein A (2019) Isolation, identification and molecular characterization of pectinase producing bacterial isolate Klebsiella oxytoca. Arab Univ J Agric Sci 27(1):553–561. https://doi.org/10.21608/AJS.2019.43665

    Article  Google Scholar 

  39. Kana K, Kanellaki M, Psarianos C, Koutina A (1989) Ethanol production by Saccharomyces cerevisiae immobilized on mineral Kissiris. J Ferment Bioeng 68(2):144–147. https://doi.org/10.1016/0922-338X(89)90064-0

    Article  CAS  Google Scholar 

  40. Dzung NA, Dzung TT, Khanh VTP (2013) Evaluation of coffee husk compost for improving soil fertility and sustainable coffee production in rural central highland of Vietnam. Resour Environ 3(4):77–82. https://doi.org/10.5923/j.re.20130304.03

    Article  Google Scholar 

  41. Bressani PP, Martinez SJ, Evangelista SR, Dias DR, Schwan RF (2018) Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. LWT Food Sci Technol 92:212–219. https://doi.org/10.1016/j.lwt.2018.02.029

    Article  CAS  Google Scholar 

  42. Agnoletti BZ, Folli GS, Pereira LL, Pinheiro PF, Guarçoni RC, Oliveira ECS, Filgueiras PR (2022) Multivariate calibration applied to study of volatile predictors of arabica coffee quality. Food Chem 367:130679. https://doi.org/10.1016/j.foodchem.2021.130679

    Article  CAS  PubMed  Google Scholar 

  43. Mathur M, Kamal R (2012) Studies on trigonelline from Moringa oleifera and its in vitro regulation by feeding precursor in cell cultures. Rev Bras Farmacogn 22(5):994–1001. https://doi.org/10.1590/S0102-695X2012005000041

    Article  CAS  Google Scholar 

  44. Perchat N, Saaidi PL, Darii E, Pellé C, Petit JL, Besnard-Gonnet M, Berardinis V, Dupont M, Gimbernat A, Salanoubat M, Fischer MC, Perret A (2018) Elucidation of the trigonelline degradation pathway reveals previously undescribed enzymes and metabolites. PNAS 115(19):E4358–E4367. https://doi.org/10.1073/pnas.1722368115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wu X, Skog K, Jägerstad M (1997) Trigonelline, a naturally occurring constituent of green coffee beans behind the mutagenic activity of roasted coffee? Mutat Res 391(3):171–177. https://doi.org/10.1016/s1383-5718(97)00065-x

    Article  CAS  PubMed  Google Scholar 

  46. Qaderi A, Akbari Z, Kalateh-Jari S, Fatehi F, Tolyat M, Moghadam MJ, Badi HN (2015) Improving trigonelline production in hairy root culture of fenugreek (Trigonella foenum-graecum). J Med Plants 15(59):73–80

    Google Scholar 

  47. Liaud N, Giniés C, Navarro D (2014) Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotechnol 1:1. https://doi.org/10.1186/s40694-014-0001-z

    Article  PubMed Central  Google Scholar 

  48. Ricke SC, Dittoe DK, Richardson KE (2020) Formic acid as an antimicrobial for poultry production: a review. Front Vet Sci 7:563. https://doi.org/10.3389/fvets.2020.00563

    Article  PubMed  PubMed Central  Google Scholar 

  49. The European Union and the Panel on Additives and Products or Substances used in Animal Feed (2015) Scientific opinion on the safety and efficacy of glycyrrhizic acid ammoniated (chemical group 30, miscellaneous substances) when used as a flavouring for all animal species. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP), vol 13, p 1. https://doi.org/10.2903/j.efsa.2015.3971

  50. Sabrin RMI, Mohamed GA, Khedre AIM. (2017). g-Butyrolactones from Aspergillus species: structures, biosynthesis, and biological activities. Nat Prod Commun 12(5). https://doi.org/10.1177/1934578X1701200526

  51. Krzyczkowska J, Phan-Thi H, Waché Y (2017) Lactone formation in yeast and fungi. In: Mérillon JM, Ramawat K (eds) Fungal metabolites reference series in phytochemistry. Springer, Cham

    Google Scholar 

  52. Alberts B, Johnson A, Lewis J, Raff M, Peter KR (2014) Walter. Molecular biology of the cell, 7th edn. Garland Science, New York. ISBN-10: 0-8153-3218-1. ISBN-10: 0-8153-4072-9

  53. Velez MEV, Da Luz JMR, Da Silva MCS, Cardoso WS, Lopes LS, Vieira NA, Kasuya MCM (2019) Production of bioactive compounds by the mycelial growth of Pleurotus djamor in whey powder enriched with selenium. LWT- Food Sci Technol 114:108376. https://doi.org/10.1016/j.lwt.2019.108376

    Article  CAS  Google Scholar 

  54. Jasinghe VJ, Perera CO (2005) Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D2 by UV irradiation. Food Chem 92(3):541–546. https://doi.org/10.1016/j.foodchem.2004.08.022

    Article  CAS  Google Scholar 

  55. Williamson K, Hatzakis E (2019) Evaluating the effect of roasting on coffee lipids using a hybrid targeted-untargeted NMR approach in combination with MRI. Food Chem 299:125039. https://doi.org/10.1016/j.foodchem.2019.125039

    Article  CAS  PubMed  Google Scholar 

  56. Servent A, Boulanger R, Davrieux F, Pinot MN, Tardan E, Forestier-Chiron N, Hue C (2018) Assessment of cocoa (Theobroma cacao L.) butter content and composition throughout fermentations. Food Res Int 107:675–682. https://doi.org/10.1016/j.foodres.2018.02.070

    Article  CAS  PubMed  Google Scholar 

  57. Torres AI, Daoutidis P, Tsapatsis M (2011) Biomass to chemicals: design of an extractive reaction process for the production of 5-hydroxymethylfurfural. Comput Aided Chem Eng 29:236–240. https://doi.org/10.1016/B978-0-444-53711-9.50048-1

    Article  CAS  Google Scholar 

  58. Akıllıoglu HG, Gökmen V (2014) Mitigation of acrylamide and hydroxymethylfurfural in instant coffee by yeast fermentation. Food Res Int 61:252–256. https://doi.org/10.1016/j.foodres.2013.07.057

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Sul Serrana of Espírito Santo Free Admission Credit Cooperative—Sicoob (23186000886201801), the Coordination of Superior Level Staff Improvement—CAPES, and the National Council for Scientific and Technological Development—CNPq, the Federal Institute of Espírito Santo, for supporting the research, through the PRPPG n°. 10/2019—Productivity Researcher Program—PPP, the Capixaba Institute for Research, Technical Assistance and Rural Extension—INCAPER, the Federal University of Viçosa—UFV, and the panelists for their cooperation in this study. As well as the coffee grower, Mr. Alfredo Sossai, for the harvest and donation of the fruits for the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Louzada Pereira.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material S1

Treatments used in the experiment with variations in fruit processing, microbial inoculation, water addition, and fermentation time (249 KB).

Supplementary file2 (DOCX 13 KB)

Supplementary file3 (DOCX 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, M.C.S., da Luz, J.M.R., Veloso, T.G.R. et al. Processing techniques and microbial fermentation on microbial profile and chemical and sensory quality of the coffee beverage. Eur Food Res Technol 248, 1499–1512 (2022). https://doi.org/10.1007/s00217-022-03980-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-022-03980-6

Keywords

Navigation