Skip to main content

Advertisement

Log in

Influence of isolation techniques on the composition of glucosinolate breakdown products, their antiproliferative activity and gastrointestinal stability of allyl isothiocyanate

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Mustard seeds are used as a food, and spice due to their nutritive value, the presence of biologically active compounds, and specific taste. Its morphology was investigated by optical microscopy and scanning electron microscopy before and after isolation by hydrodistillation and microwave assisted distillation. The chemical composition of volatile compounds in different mustard seeds (Brassica juncea L. and Brassica nigra L.) was determined using GC–MS, after applying various techniques (Clevenger hydrodistillation, microwave assisted distillation—MAD, and microwave hydrodiffusion and gravity—MHG). Allyl isothiocyanate, degradation product of allyl glucosinolate, was the main volatile compound in B. juncea essential oils and extract after all applied extraction techniques (91.07–99.01%). Gastrointestinal stability of allyl isothiocyanate was determined employing two-phase digestion model (gastric and duodenal) by two methods (in vitro digestion method using commercial and ex vivo digestion method using human digestive enzymes). The stability rate of allyl isothiocyanate was higher after the gastric digestion phase by both methods. In B. nigra seeds but-3-enyl and allyl isothiocyanate were the main compounds after Clevenger hydrodistillation (80.58% and 15.39%, respectively). After MAD, and MHG the main compounds were 4,5-epithiopentanenitrile (50.70% and 59.93%, respectively), and 3,4-epithiobutanenitrile (7.61% and 25.97%, respectively), originating from the same glucosinolates, i.e. but-3-enyl and allyl glucosinolate, respectively. Antiproliferative activity of mustard seed EOs and extracts was evaluated against human cancer cell lines (MDA-MB-231 and TCCSUP). The best antiproliferative activity was shown for B. nigra MHG extract against MDA-MB-231 cell line with IC50 value of 9.1 µg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

EO:

Essential oil

ESP:

Epithiospecifier protein

GSL:

Glucosinolate

GC–MS:

Gas chromatography–mass spectrometry

ITC:

Isothiocyanate

MAD:

Microwave-assisted distillation

MHG:

Microwave hydrodiffusion and gravity

RGE 15:

Rabbit gastric extract 15

References

  1. Jahangir M, Kim HK, Choi YH, Verpoorte R (2009) Health-affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf 8:31–43. https://doi.org/10.1111/j.1541-4337.2008.00065.x

    Article  CAS  Google Scholar 

  2. Fernandez-Leon AM, Fernandez-Leon MF, Gonzalez-Gomez D, Ayuso MC, Bernalte MJ (2017) Quantification and bioaccessibility of intact glucosinolates in broccoli „Parthenon“ and Savoy cabbage „Dama“. J Food Compos Anal 61:40–46. https://doi.org/10.1016/j.jfca.2016.11.010

    Article  CAS  Google Scholar 

  3. Nawaz H, Shad MA, Muzaffar S (2008) Phytochemical composition and antioxidant potential of Brassica. Brassica Germplasm Charact Breed Util. https://doi.org/10.5772/intechopen.76120

    Article  Google Scholar 

  4. Puangkam K, Muanghorm W, Konsue N (2017) Stability of bioactive compounds and antioxidant activity of Thai cruciferous vegetables during in vitro digestion. Curr Res Nutr Food Sci 5:100–108. https://doi.org/10.12944/CRNFSJ.5.2.06

    Article  Google Scholar 

  5. Blažević I, Montaut S, Burčul F, Rollin P (2017) Glucosinolates: novel sources and biological potential. In: Mérillon J-M, Ramawat KG (Eds.) Glucosinolates. Ref Ser Phytochem, pp 3–60

  6. Mazumder A, Dwivedi A, du Plessis J (2016) Sinigrin and its therapeutic benefits. Molecules 21:416. https://doi.org/10.3390/molecules21040416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang T, Liang H, Yuan O (2011) Optimization of ultrasonic-stimulated solvent extraction of Sinigrin from Indian mustard seed (Brassica Juncea L.) using response surface methodology. Phytochem Anal 22:205–213. https://doi.org/10.1002/pca.1266

    Article  CAS  PubMed  Google Scholar 

  8. Al-Snafi AE (2015) The pharmacological importance of Brassica nigra and Brassica rapa grown in Iraq. J Pharm Biol 5(4):240–253

    Google Scholar 

  9. Boscaro V, Boffa L, Binello A, Amisano G, Fornasero S, Cravotto G, Gallicchio M (2018) Antiproliferative, proapoptotic, antioxidant and antimicrobial effects of Sinapis nigra L. and Sinapis alba L. extracts. Molecules 23:3004. https://doi.org/10.3390/molecules23113004

    Article  CAS  PubMed Central  Google Scholar 

  10. Kissen R, Rossiter JT, Bones AM (2009) The ‘Mustard oil bomb’: Not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochem Rev 8:69–86. https://doi.org/10.1007/s11101-008-9109-1

    Article  CAS  Google Scholar 

  11. Hanschen FS, Klopsch R, Oliviero T, Schreiner M, Verkerk R, Dekker M (2017) Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brasssica vegetables and Arabidopsis thaliana. Sci Rep 7:40807

    Article  CAS  Google Scholar 

  12. Bones AM, Rossiter JT (2006) The enzymic and chemically induced decomposition of glucosinolates. Phytochem 67:1053–1067. https://doi.org/10.1016/j.phytochem.2006.02.024

    Article  CAS  Google Scholar 

  13. Abdul-Fadl MM, El-Badry N, Ammar MS (2011) Nutritional and chemical evaluation for two different varieties of mustard seeds. World Appl Sci J 15:1225–1233

    Google Scholar 

  14. Herzallah S, Holley R (2012) Determination of sinigrin, sinalbin, allyl- and benzyl isothiocyanates by RP-HPLC in mustard powder extracts. LWT Food Sci Technol 47:293–299. https://doi.org/10.1016/j.lwt.2012.01.022

    Article  CAS  Google Scholar 

  15. Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk. Plant Physiol 124:599–608. https://doi.org/10.1104/pp.124.2.599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Popova IE, Morra MJ (2014) Simultaneous quantification of Sinigrin, Sinalbin, and anionic glucosinolate hydrolysis products in Brassica juncea and Sinapis alba seed extracts using ion chromatography. J Agric Food Chem 62:10687–10693. https://doi.org/10.1021/jf503755m

    Article  CAS  PubMed  Google Scholar 

  17. Blažević I, Đulović A, Maravić A, Čikeš Čulić V, Montaut S, Rollin P (2019) Antimicrobial and cytotoxic activities of Lepidium latifolium L.; hydrodistillate, extract and its major sulfur volatile allyl isothiocyanate. Chem Biodivers 16:1–11. https://doi.org/10.1002/cbdv.201800661

    Article  CAS  Google Scholar 

  18. Chemat F, Vian MA, Ravi HK, Khadhraoui B, Hilali S, Perino S, Fabiano-Tixier AS (2019) Review of alternative solvents for green extraction of food and natural products: panorama, principles, applications and prospects. Molecules 24:3007. https://doi.org/10.3390/molecules24163007

    Article  CAS  PubMed Central  Google Scholar 

  19. Okunade OE, Ghawi SK, Methven L, Niranjan K (2015) Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds. Food Chem 187:485–490. https://doi.org/10.1016/j.foodchem.2015.04.054

    Article  CAS  PubMed  Google Scholar 

  20. Brodkorb A, Egger L, Alminger M, Alvito P, Assuncao R, Ballance S, Bohn T, Bourlieu-Lacanal C, Boutrou R, Carriere F, Clemente A, Corredig M, Dupont D, Dufour C, Edwards C, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U, Macierzanka A, Mackie AR, Martins C, Marze S, McClements DJ, Menard O, Minekus M, Portmann R, Santos CN, Souchon I, Singh RP, Vegarud GE, Wickham MSJ, Weitschies W, Recio I (2019) INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat Protoc 14:991–1014. https://doi.org/10.1038/s41596-018-0119-1

    Article  CAS  PubMed  Google Scholar 

  21. Capolino P, Guerin C, Paume J, Giallo J, Ballester JM, Cavalier JF, Carriere F (2011) In vitro gastrointestinal lipolysis: replacement of human digestive lipases by a combination of rabbit gastric and porcine pancreatic extracts. Food Dig 2:43–51. https://doi.org/10.1007/s13228-011-0014-5

    Article  CAS  Google Scholar 

  22. Vrca I, Burčul F, Blažević I, Bratanić A, Bilušić T (2021) Comparison of gastrointestinal stability of isothiocyanates from Tropaeolum majus L. altum using in vitro and ex vivo digestion methods. Croat J Food Sci Technol 13 (2) (in press). https://doi.org/10.17508/CJFST.2021.13.2.04

  23. Drozdowska M, Leszczyńska T, Koronowicz A, Piasna-Słupecka E, Domagała D, Kusznierewic B (2020) Young shoots of red cabbage are a better source of selected nutrients and glucosinolates in comparison to the vegetable at full maturity. Eur Food Res Technol 246:2505–2515. https://doi.org/10.1007/s00217-020-03593-x

    Article  CAS  Google Scholar 

  24. Bo P, Lien JC, Chen YY, Yu FS, Lu HF, Yu CS, Chou YC, Yu CC, Chung JG (2016) Allyl isothiocyanate Induces cell toxicity by multiple pathways in human breast cancer cells. Am J Chin Med 44:415–437. https://doi.org/10.1142/S0192415X16500245

    Article  CAS  PubMed  Google Scholar 

  25. Tseng E, Scott-Ramsay EA, Morris ME (2004) Dietary organic isothiocyanates are cytotoxic in human breast cancer MCF-7 and mammary epithelial MCF-12A cell lines. Exp Biol Med (Maywood) 229(8):835–842. https://doi.org/10.1177/153537020422900817

    Article  CAS  Google Scholar 

  26. Veeranki OL, Bhattacharya A, Tang L, Marshall JR, Zhang Y (2015) Cruciferous vegetables, isothiocyanates, and prevention of bladder cancer. Curr Pharmacol Rep 1(4):272–282. https://doi.org/10.1007/s40495-015-0024-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Savio ALV, da Silva GN, Salvadori DMF (2015) Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil). Mutat Res 771:29–35. https://doi.org/10.1016/j.mrfmmm.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  28. Almaas H, Cases AL, Devold TG, Holm H, Langsrud T, Aabakken L, Aadnoey T, Vegarud GE (2006) In vitro digestion of bovine and caprine milk by human gastric and duodenal enzymes. Int Dairy J 16:961–968. https://doi.org/10.1016/j.idairyj.2005.10.029

    Article  CAS  Google Scholar 

  29. Blažević I, Đulović A, Burčul F, Popović M, Montaut S, Bilušić T, Vrca I, Markić J, Ljubenkov I, Ruščić M, Rollin P (2020) Stability and bioacessibility during ex vivo digestion of glucoraphenin and glucoraphasatin from Matthiola incana L. J Food Compos Anal 90(103483):1–7. https://doi.org/10.1016/j.jfca.2020.103483

    Article  CAS  Google Scholar 

  30. Al-Gendy AA, Nematallah KA, Zaghloul SS, Ayoub NA (2016) Glucosinolates profile, volatile constituents, antimicrobial, and cytotoxic activities of Lobularia libyca. Pharm Biol 54:3257–3263. https://doi.org/10.1080/13880209.2016.1223146

    Article  CAS  PubMed  Google Scholar 

  31. Yu JC, Jiang Z-T, Li R, Chan SM (2003) Chemical composition of the essential oils of Brassica juncea (L) coss grown in different regions, Hebei, Shaanxi and Shandong of China. J Food Drug Anal 11:22–26. https://doi.org/10.38212/2224-6614.2729

    Article  CAS  Google Scholar 

  32. Singh S, DaS SS, Singh G, Perroti M, Schuff C, Catalán CAN (2017) Comparison of chemical composition, antioxidant and antimicrobial potentials of essential oils and oleoresins obtained from seeds of Brassica juncea and Sinapis alba. MOJ Food Process Technol 4:113–120. https://doi.org/10.15406/mojfpt.2017.04.00100

    Article  Google Scholar 

  33. Eisenschmidt-Bönn D, Schneegans N, Backenköhler A, Wittstock U, Brandt W (2019) Structural diversification during glucosinolate breakdown: mechanisms of thiocyanate, epithionitrile and simple nitrile formation. Plant J 99:329–343. https://doi.org/10.1111/tpj.14327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matusheski NV, Juvik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli. Phytochem 65(9):1273–1281. https://doi.org/10.1016/j.phytochem.2004.04.013

    Article  CAS  Google Scholar 

  35. Mejia-Garibay B, Palou E, Lopez-malo A (2015) Composition, diffusion, and antifungal activity of black mustard (Brassica nigra) essential oil when applied by direct addition or vapor phase contact. J Food Prot 78(4):843–848. https://doi.org/10.4315/0362-028X.JFP-14-485

    Article  CAS  PubMed  Google Scholar 

  36. Rodriguez-Hernandez MC, Medina S, Gil-Izquierdo A, Martinez-Ballesta C, Moreno DA (2013) Broccoli isothiocyanate content and in vitro availability according to variety and origin. Maced J Chem Chem Eng 32(2):251–264. https://doi.org/10.20450/mjcce.2013.354

    Article  CAS  Google Scholar 

  37. Kawakishi S, Kaneko T (1987) Interaction of proteins with allyl isothiocyanate. J Agric Food Chem 35(1):85–88. https://doi.org/10.1021/jf00073a020

    Article  CAS  Google Scholar 

  38. Oliviero T, Verkerk R, Dekker M (2018) Isothiocyanathes from Brassica vegetables—effects of processing, cooking, mastication, and digestion. Mol Nutr Food Res 62(18):1–11. https://doi.org/10.1002/mnfr.201701069

    Article  CAS  Google Scholar 

  39. Rungapamestry V, Duncan AJ, Fuller Z, Ratcliffe B (2007) Effect of meal composition and cooking duration on the fate of sulforaphane following consumption of broccoli by healthy human subjects. Br J Nutr 97:644–652. https://doi.org/10.1017/S0007114507381403

    Article  CAS  PubMed  Google Scholar 

  40. Bassan P, Bhushan S, Kaur T, Arora R, Arora S, Vig AP (2018) Extraction, profiling and bioactivity analysis of volatile glucosinolates present in oil extract of Brassica juncea var. raya. Physiol Mol Biol Plants 24(3):399–409. https://doi.org/10.1007/s12298-018-0509-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Conde-Rioll M, Gajate C, Fernandez JJ, Villa-Pulgarin JA, Napolitano JG, Norte M, Mollinedo F (2108) Antitumor activity of Lepidium latifolium and identification of the epithionitrile 1-cyano-2,3-epithiopropane as its major active component. Mol Carcinog 57(3):347–360. https://doi.org/10.1002/mc.22759

  42. Sayeed MA, Bracci M, Ciarapica V, Malavolta M, Provinciali M, Pieragostini E, Gaetani S, Monaco F, Lucarini G, Rapisarda V, Di Primio R, Santarelli L (2018) Allyl isothiocyanate exhibits no anticancer activity in MDA-MB-231 breast cancer cells. Int J Mol Sci 19(1):145. https://doi.org/10.3390/ijms19010145

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are also thankful for the scientific-research equipment funded by EU grant “Functional integration of the University of Split, PMF-ST, PF-ST and KTF-ST through the development of the scientific and research infrastructure” (KK.01.1.1.02.0018).

Funding

This work has been fully supported by the Croatian Science Foundation within the project "Plants as a source of bioactive sulfur compounds and their ability to hyperaccumulate metals", HRZZ-IP-2016–06-1316.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, formal analysis, investigations as well as reviewing and editing was performed by all authors. Optical and SEM microscopy: [IV], [JŠ], [NK] and [IB]; isolation of volatile compounds: [IV]; chemistry investigation: [IV] and [IB]; antiproliferative activity (MTT assay): [IV] and [VČČ]; obtaining human gastric juices: [AB]; two-phase digestion simulations: [IV] and [TB]; tandem mass spectrometry analysis: [FB]. The first original draft of the manuscript was written by [IV] and [TB]. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Ivana Vrca.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

The study included an ex vivo method of a digestive model with human digestive juices. Permission for the collection of human digestive juices was obtained by the Ethics Committee of the Clinical Hospital Center—Split and the Ethics Committee of the Faculty of Medicine, University of Zagreb, Reg. No.: 380-59-10106-20-111/105, Class: 641-01/20-02/01.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1796 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vrca, I., Šćurla, J., Kević, N. et al. Influence of isolation techniques on the composition of glucosinolate breakdown products, their antiproliferative activity and gastrointestinal stability of allyl isothiocyanate. Eur Food Res Technol 248, 567–576 (2022). https://doi.org/10.1007/s00217-021-03903-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03903-x

Keywords

Navigation