Skip to main content
Log in

Local and underutilised fruits as a source of nutraceutical molecules: bioactive compounds in Mespilus germanica L.

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Medlar (Mespilus germanica L.) has been cultivated in several Asian and European countries for medical/food use for many years. As scarce information is available outside Southwest Asia, this study aimed to increase the knowledge of this local and underutilised fruit in Italy as a source of bioactive compounds. Total polyphenolic content (TPC) and antioxidant capacity (AOC) were evaluated by spectrophotometric methods, while the main phytochemical compounds were identified and quantified by HPLC fingerprint. Even if many compounds are variable and decrease during ripening, this research reported the presence of considerable amounts of bioactive compounds in ripe medlar fruits, which resulted particularly rich in monoterpenes (total: 1380.26 ± 48.06 mg/100 gFW; in particular γ-terpinene 922.77 ± 31.61 mg/100 g of fresh weight or FW) and organic acids (total: 963.05 ± 33.21 mg/100 gFW; in particular, malic and citric acid: 406.50 ± 5.25 and 380.99 ± 13.11 mg/100 gFW, respectively), with high values of TPC (138.58 ± 10.03 mg/100 gFW) and AOC (6.59 ± 2.35 mmol Fe2+/kgFW), revealing the benefits of this fruit as a source of antioxidants and anti-inflammatory agents. Bioactive compound content of M. germanica extracts exhibited high variability in different geographic areas, that may depend on several biotic and abiotic factors, and many compounds showed a decreasing trend losing properties during the ripening, but the presence of health-promoting agents was confirmed by the high levels of bioactive compounds observed in the analysed fruit and highlighted the necessity of enhancing the propagation of the medlar in the Italian peninsula as fresh fruit and high-quality nutritional and health-promoting ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Code availability

Not applicable.

References

  1. Parvathi S, Kumar VJF (2002) studies on chemical composition and utilization of the wild edible vegetable athalakkai (Momordica tuberose). Plant Foods Hum Nutr 57:215–222

    Article  CAS  PubMed  Google Scholar 

  2. Arabshahi-Delouee S, Urooj A (2007) Antioxidant properties of various solvent extracts of mulberry (Morus Indica L.) leaves. Food Chem 102:1233–1240

    Article  CAS  Google Scholar 

  3. Moldovan B, Filip A, Clichici S, Suharoschi R, Bolfa P, David L (2016) Antioxidant activity of cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. J Funct Foods 26:77–87

    Article  CAS  Google Scholar 

  4. Aslantas R, Pirlak L, Güleryüz M (2007) The nutritional value of wild fruits from the North Eastern Anatolia region of Turkey. Asian J Chem 19(4):3072–3078

    CAS  Google Scholar 

  5. Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Amer J Bot 89:1478–1484

    Article  CAS  Google Scholar 

  6. Ayaz FA, Glew RH, Huang HS, Chuang LT, Vanderjagt DJ, Strnad M (2002) Evolution of fatty acids in medlar (Mespilus germanica L.) mesocarp at different stages of ripening. Grasas Aceites 53:352–356

    CAS  Google Scholar 

  7. Rop O, Sochor J, Jurikova T, Zitka O, Skutkova H, Mlcek J, Salas P, Krska B, Babula P, Adam V, Kramarova D, Beklova M, Provaznik I, Kizek R (2011) Effect of five different stages of ripening on chemical compounds in medlar (Mespilus germanica L.). Molecules 16:74–91

    Article  CAS  Google Scholar 

  8. Lim TK (2012) Edible medicinal and non-medicinal plants. Springer

    Book  Google Scholar 

  9. Gruz J, Ayaz FA, Torun H, Strand M (2011) Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem 124:271–277

    Article  CAS  Google Scholar 

  10. Glew RH, Ayaz FA, Sanz C, Vanderjagt DJ, Huang HS, Chuang LT, Strnad M (2003) Effect of postharvest period on sugars, organic acids and fatty acids composition in commercially sold medlar (Mespilus germanica _Dutch_) fruit. Eur Food Res Technol 216:390–394

    Article  CAS  Google Scholar 

  11. Glew RH, Ayaz FA, Sanz C, Vanderjagt DJ, Huang HS, Chuang LT, Strnad M (2003) Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation. Food Chem 83:363–369

    Article  CAS  Google Scholar 

  12. Glew RH, Ayaz FA, Vanderjagt DJ, Millson M, Dris R, Niskanen RA (2003) Research note mineral composition of medlar (Mespilus germanica) fruit at different stages of maturity. J Food Qual 26:441–447

    Article  CAS  Google Scholar 

  13. Dincer B, Colak A, Aydin N, Kadioglu A, Guner S (2002) Characterization of polyphenoloxidase from medlar fruits (Mespilus germanica L., Rosaceae). Food Chem 77:1–7

    Article  CAS  Google Scholar 

  14. Aydin N, Kadioglu A (2001) Changes in the chemical composition, polyphenol oxidase and peroxidase activities during development and ripening of medlar fruits (Mespilus Germanica L.). Bulg J Plant Physiol 27(3–4):85–92

    CAS  Google Scholar 

  15. Nabavi SF, Nabavi SM, Ebrahimzadeh MA, Asgarirad H (2011) The antioxidant activity of wild medlar (Mespilus germanica L.) fruit, stem bark and leaf. Afr J Biotechnol 10(2):283–289

    Google Scholar 

  16. Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    Article  CAS  Google Scholar 

  17. Benzie IF, Strain J (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–27

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Molina E, Moreno DA, Garcia-Viguera C (2008) Genotype and harvest time influence the phytochemical quality of fino lemon juice (Citrus limon (L.) Burm. F.) for industrial use. J Agric Food Chem 56:1669–1675

    Article  CAS  PubMed  Google Scholar 

  19. Donno D, Cerutti AK, Mellano MG, Prgomet Z, Beccaro GL (2016) Serviceberry, a berry fruit with growing interest of industry: physicochemical and quali-quantitative health-related compound characterisation. J Funct Foods 26:157–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mok DKW, Chau FT (2006) Chemical information of Chinese medicines: a challenge to chemist. Chemom Intell Lab Syst 82:210–217

    Article  CAS  Google Scholar 

  21. Dunn PK, Smyth GK (2018) Generalized linear models with examples in R. Springer

    Book  Google Scholar 

  22. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing

    Google Scholar 

  23. RStudio Team (2020) RStudio: integrated development for R. RStudio Inc

    Google Scholar 

  24. Ercisli S, Sengul M, Yildiz H, Sener D, Duralija B, Voca S, Dujmovic Purgar D (2012) Phytochemical and antioxidant characteristics of medlar fruits (Mespilus germanica L.). J Appl Bot Food Quality 85:86–90

    CAS  Google Scholar 

  25. Donno D, Mellano MG, De Biaggi M, Riondato I, Rakotoniaina EN, Beccaro GL (2018) New findings in Prunus padus L. fruits as a source of natural compounds: characterization of metabolite profiles and preliminary evaluation of antioxidant activity. Molecules 23:725

    Article  PubMed Central  CAS  Google Scholar 

  26. Donno D, Mellano MG, Prgomet Z, Beccaro GL (2018) Advances in Ribes x Nidigrolaria Rud. Bauer & A. Bauer fruits as potential source of natural molecules: a preliminary study on physico-chemical traits of an underutilized berry. Sci Hortic 237:20–27

    Article  CAS  Google Scholar 

  27. De Biaggi M, Donno D, Mellano MG, Riondato I, Rakotoniaina EN, Beccaro GL (2018) Cornus mas (L.) fruit as a potential source of natural health-promoting compounds: physico-chemical characterisation of bioactive components. Plant Foods Hum Nutr 73(2):89–94

    Article  PubMed  CAS  Google Scholar 

  28. Mikulic-Petkovsek M, Rescic J, Schmitzer V, Stampar F, Slatnar A, Koron D, Veberic R (2015) changes in fruit quality parameters of four Ribes species during ripening. Food Chem 173:363–374

    Article  CAS  PubMed  Google Scholar 

  29. Kafkas E, Koşar M, Paydaş S, Kafkas S, Başer K (2007) Quality characteristics of strawberry genotypes at different maturation stages. Food Chem 100:1229–1236

    Article  CAS  Google Scholar 

  30. Donno D, Mellano MG, Prgomet Z, Cerutti AK, Beccaro GL (2017) Phytochemical characterization and antioxidant activity evaluation of Mediterranean medlar fruit (Crataegus azarolus L.): preliminary study of underutilized genetic resources as a potential source of health-promoting compound for food supplements. J Food Nutr Res 56(1):18–31

    CAS  Google Scholar 

  31. Kobayashi H, Wang CZ, Pomper KW (2008) Phenolic content and antioxidant capacity of pawpaw fruit (Asimina triloba L.) at different ripening stages. HortScience 43:268–270

    Article  Google Scholar 

  32. De Biaggi M, Donno D, Mellano MG, Gamba G, Riondato I, Rakotoniaina EN, Beccaro GL (2020) Emerging species with nutraceutical properties: bioactive compounds from Hovenia dulcis pseudofruits. Food Chem 310:125816

    Article  PubMed  CAS  Google Scholar 

  33. Campanella L, Bonanni A, Favero G, Tomassetti M (2003) Determination of antioxidant properties of aromatic herbs, olives and fresh fruit using an enzymatic sensor. Anal Bioanal Chem 375:1011–1016

    Article  CAS  PubMed  Google Scholar 

  34. Demir N, Yildiz O, Alpaslan M, Hayaloglu AA (2014) Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT Food Sci Technol 57(1):126–133

    Article  CAS  Google Scholar 

  35. De Cássisa DSESR, Andrade LN, De Sousa DP (2013) A review on anti-inflammatory activity of monoterpenes. Molecules 18(1):1227–1254

    Article  CAS  Google Scholar 

  36. Cosmulescu SN, Trandafir I, Scrieciu F, Stoenescu A-M (2020) Content in organic acids of Mespilus spp and Crataegus spp. genotypes. Not Bot Horti Agrobot Cluj-Napco 48(1):171–176

    Article  CAS  Google Scholar 

  37. Soyer Y, Koca N, Karadeniz F (2003) organic acid profile of Turkish white grapes and grape juices. J Food Compos Anal 16:629–636

    Article  CAS  Google Scholar 

  38. Eyduran SP, Ercisli S, Akin M, Beyhan O, Gecer MK, Eyduran E, Erturk YE (2015) Organic acids, sugars, vitamin c, antioxidant capacity and phenolic compounds in fruits of white (Morus alba L.) and black (Morus nigra L.) mulberry genotypes. J Appl Bot Food Qual 88:134–138

    Google Scholar 

  39. Sánchez-Salcedo E, Mena P, García-Viguera C, Martínez JJ, Hernández F (2015) Phytochemical evaluation of white (Morus alba L.) and black (Morus nigra L.) mulberry fruits, a starting point for the assessment of their beneficial properties. J Funct Foods 12:399–408

    Article  CAS  Google Scholar 

  40. Wojdyło A, Oszmia NJ, Bielicki P (2013) Polyphenolic composition, antioxidant activity, and polyphenol oxidase (PPO) activity of quince (Cydonia oblonga Miller) varieties. J Agric Food Chem 61:2762–2772

    Article  PubMed  CAS  Google Scholar 

  41. Nour V, Trandafir I, Ionica ME (2010) Compositional characteristics of fruits of several apple (Malus Domestica Borkh) cultivars. Not Bot Hort Agrobot Cluj 38(3):228–233

    CAS  Google Scholar 

  42. Veberic R, Trobec M, Herbinger K, Hofer M, Grill D, Stampar F (2005) Phenolic compounds in some apple (Malus domestica Borkh) cultivars of organic and integrated production. J Sci Food Agric 85:1687–1694

    Article  CAS  Google Scholar 

  43. Belkhir M, Rebai O, Dhaouadi K, Congiu F, Tuberoso CI, Amri M, Fattouch S (2013) Comparative analysis of Tunisian wild Crataegus azarolus (yellow azarole) and Crataegus monogyn (red azarole) leaf, fruit, and traditionally derived syrup: phenolic profiles and antioxidant and antimicrobial activities of the aqueous-acetone extracts. J Agric Food Chem 61(40):9594–9601

    CAS  PubMed  Google Scholar 

  44. Boudraa S, Hambaba L, Zidani S, Boudraa H (2010) Mineral and vitamin composition of fruits of five underexploited species in Algeria: Celtis australis L., Crataegus azarolus L., Crataegus monogyna Jacq., Elaeagnus angustifolia L. and Zizyphus lotus L. Fruits 65:75–84

    Article  CAS  Google Scholar 

  45. Gülçin İ, Topal F, Sarikaya SBÖ, Bursal E, Bilsel G, Gören AC (2011) Polyphenol contents and antioxidant properties of Medlar (Mespilus germanica L.). Rec Nat Prod 5(3):158

    Google Scholar 

  46. Cevahir G, Bostan SZ (2021) Organic acids, sugars and bioactive compounds of promising medlar (Mespilus Germanica L.) genotypes selected from Turkey. Int J Fruit Sci. https://doi.org/10.1080/15538362.2021.1874594

    Article  Google Scholar 

  47. Ozturk A, Kenan Y, Ozturk B, Karakaya O, Gun S, Uzun S, Gundogdu M (2019) Maintaining postharvest quality of medlar (Mespilus germanica) fruit using modifed atmosphere packaging and methyl jasmonate. LWT - Food Scie Tech 111:117–124. https://doi.org/10.1016/j.lwt.2019.05.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mauro Caviglione and Marco D’Oria for the field activities (plant management and fruit collection) in the germplasm repository of the Department of Agricultural, Forest and Food Sciences, University of Turin.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Donno.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessa, G., Donno, D., Gamba, G. et al. Local and underutilised fruits as a source of nutraceutical molecules: bioactive compounds in Mespilus germanica L.. Eur Food Res Technol 247, 2861–2868 (2021). https://doi.org/10.1007/s00217-021-03843-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03843-6

Keywords

Navigation