Skip to main content
Log in

Quality assessment of dried organic bell peppers through composition and sensory analysis

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A comprehensive quality evaluation was performed on dried sweet bell pepper samples obtained from two years of production, two genotypes and two drying technologies, using one conventional and two organic cropping systems. A total number of 35 quality indexes, comprising non-volatile and volatile flavor compounds and health related compounds were evaluated for their possible role in the flavor of dried bell pepper: the most significant variations in the data analysis due to the year, drying technique, genotype and cropping system resulted in 25, 25, 16 and 10 significant interactions, respectively. The PCA analysis confirmed the main role of drying technique and sampling year. The malic acid for non-volatile compounds, linalool and 2-methoxy-3-isobutylpyrazine for volatiles represent the most relevant chemical indexes significantly correlating with many sensory descriptors scored by panellists, and are, therefore, proposed as quality markers to be carefully monitored for a correct quality evaluation of dried bell pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arimboor R, Natarajan RB, Menon KR, Chandrasekhar LP, Moorkoth V (2015) Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. J Food Sci Technol 52:1258–1271

    Article  CAS  Google Scholar 

  2. Ribes-Moya AM, Raigón MD, Moreno-Peris E, Fita A, Rodríguez-Burruezo A (2018) Response to organic cultivation of heirloom Capsicum peppers: variation in the level of bioactive compounds and effect of ripening. PLoS ONE 13:e0207888

    Article  Google Scholar 

  3. Vega-Gàlvez A, Di Scala K, Rodríguez K, Lemus-Mondaca R, Miranda M, López J, Perez-Won M (2009) Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum L. var. Hungarian). Food Chem 117:647–653

    Article  Google Scholar 

  4. Marín A, Ferreres F, Tomás-Barberán FA, Gil MI (2004) Characterization and quantitation of antioxidant constituents of sweet pepper (Capsicum annuum L.). J Agric Food Chem 52:3861–3869

    Article  Google Scholar 

  5. Matsufuji H, Ishikawa K, Nunomura O, Chino M, Takeda M (2007) Anti-oxidant content of different coloured sweet peppers, white, green, yellow, orange and red (Capsicum annuum L.). Int J Food Sci Technol 42:1482–1488

    Article  CAS  Google Scholar 

  6. Kantar MB, Anderson JE, Lucht SA, Mercer K, Bernau V, Case KA et al (2016) Vitamin variation in Capsicum spp. provides opportunities to improve nutritional value of human diets. PLoS ONE 11:e0161464

    Article  Google Scholar 

  7. FDA Guidance for industry (2020) https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-food-labeling-guide. Accessed 20 Feb 2020

  8. U.S. Department of Agriculture, Agricultural Research Service. FoodData Central (2019) https://fdc.nal.usda.gov/. Accessed 2 Feb 2020

  9. INRAN CREA Centro di ricerca Alimenti e Nutrizione (2019) https://www.alimentinutrizione.it/. Accessed 2 Feb 2020

  10. Hornero-Méndez D, Costa-García J, Mínguez-Mosquera MI (2002) Characterization of carotenoid high-producing Capsicum annuum cultivars selected for paprika production. J Agric Food Chem 50:5711–5716

    Article  Google Scholar 

  11. Hornero-Méndez D, Mínguez-Mosquera MI (2001) Rapid spectrophotometric determination of red and yellow isochromic carotenoid fractions in paprika and red pepper oleoresins. J Agric Food Chem 49:3584–3588

    Article  Google Scholar 

  12. El-Hage Scialabba N, Müller-Lindenlauf M (2010) Organic agriculture and climate change. Renew Agric Food Syst 25:158–169

    Article  Google Scholar 

  13. Worthington V (2001) Nutritional quality of organic versus conventional fruits, vegetables, and grains. J Altern Complement Med 7:161–173

    Article  CAS  Google Scholar 

  14. Hallmann E, Rembiałkowska E (2012) Characterization of antioxidant compounds in sweet bell pepper (Capsicum annuum L.) under organic and conventional growing systems. J Sci Food Agric 92:2409–2415

    Article  CAS  Google Scholar 

  15. Barański M, Średnicka-Tober D, Volakakis N, Seal C, Sanderson R, Stewart GB, Leifert C (2014) Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nut 112:794–811

    Article  Google Scholar 

  16. Luning PA, Ebbenhorst-Seller T, de Rijk T, Roozen JP (1995) Effect of hot-air drying on flavour compounds of bell pepper (Capsicum annuum). J Sci Food Agric 68:355–365

    Article  CAS  Google Scholar 

  17. Darvishi H, Asl AR, Asghari A, Azadbakht M, Najafi G, Khodaei J (2014) Study of the drying kinetics of pepper. J Saudi Soc Agric Sci 13:130–138

    Google Scholar 

  18. Loizzo MR, Pugliese A, Bonesi M, Menichini F, Tundis R (2015) Evaluation of chemical profile and antioxidant activity of twenty cultivars from Capsicum annuum, Capsicum baccatum, Capsicum chacoense and Capsicum chinense: a comparison between fresh and processed peppers. LWT 64:623–631

    Article  CAS  Google Scholar 

  19. Martínez S, López M, Gonzalez-Raurich M, Bernardo A (2005) The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.). Int J Food Sci Nutr 56:45–51

    Article  Google Scholar 

  20. Bianchi G, Lo Scalzo R (2018) Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. J Food Biochem 42:e12675

    Article  Google Scholar 

  21. Korkmaz A, Hayaloglu AA, Atasoy AF (2017) Evaluation of the volatile compounds of fresh ripened Capsicum annuum and its spice pepper (dried red pepper flakes and isot). LWT 84:842–850

    Article  CAS  Google Scholar 

  22. Sharma A, Chen CR, Vu Lan N (2009) Solar-energy drying systems: a review. Renew Sust Energ Rev 13:1185–1210

    Article  Google Scholar 

  23. Lo Scalzo R, Campanelli G, Paolo D, Fibiani M, Bianchi G (2020) Influence of organic cultivation and sampling year on quality indexes of sweet pepper during 3 years of production. Eur Food Res Technol 246:1325–1339

    Article  CAS  Google Scholar 

  24. Ding P, Ling YS (2014) Browning assessment methods and polyphenol oxidase in UV-C irradiated Berangan banana fruit. Int Food Res J 21:1667–1674

    CAS  Google Scholar 

  25. Mazida MM, Salleh MM, Osman H (2005) Analysis of volatile aroma compounds of fresh chilli (Capsicum annuum) during stages of maturity using solid phase microextraction (SPME). J Food Compos Anal 18:427–437

    Article  CAS  Google Scholar 

  26. ISO 8586e1 (1993) General guidance for the selection, training and monitoring of assessors. International Organization for Standardization, Geneva, Switzerland

    Google Scholar 

  27. ASTM (1983) Physical requirements guidelines for sensory evaluation laboratories. American Society for Testing Materials, Philadelphia, PA

    Google Scholar 

  28. Labuza TP, Tannenbaum SR, Karel M (1970) Water content and stability of low moisture and intermediate moisture foods. Food Technol 24:543–550

    Google Scholar 

  29. Ergüneş G, Tarhan S (2006) Color retention of red peppers by chemical pretreatments during greenhouse and open sun drying. J Food Eng 76:446–452

    Article  Google Scholar 

  30. Velàzquez R, Hernàndez A, Martìn A, Aranda E, Gallardo G, Bartolomé T, Còrdoba MG (2014) Quality assessment of commercial paprikas. Int J Food Sci Technol 49:830–839

    Article  Google Scholar 

  31. Paolo D, Bianchi G, Morelli CF, Speranza G, Campanelli G, Kidmose U, Lo Scalzo R (2019) Impact of drying techniques, seasonal variation and organic growing on flavor compounds profiles in two Italian tomato varieties. Food Chem 298:125062

    Article  CAS  Google Scholar 

  32. Chung HS, Chung SK, Kwang-Sup Y (2011) Effects of roasting temperature and time on bulk density, soluble solids, browning index and phenolic compounds of corn kernels. J Food Process 35:832–839

    Article  CAS  Google Scholar 

  33. Wyrzykowski D, Hebanowska E, Nowak-Wiczk G, Makowski M, Chmurzyn´ski L (2011) Thermal behaviour of citric acid and isomeric aconitic acids. J Therm Anal Calorim 104:731–735

    Article  CAS  Google Scholar 

  34. Rufián-Henares JÁ, Guerra-Hernández E, García-Villanova B (2013) Effect of red sweet pepper dehydration conditions on Maillard reaction, ascorbic acid and antioxidant activity. J Food Eng 118:150–156

    Article  Google Scholar 

  35. Daood HG, Kapitány J, Biacs P, Albrecht K (2006) Drying temperature, endogenous antioxidants and capsaicinoids affect carotenoid stability in paprika (red pepper spice). J Sci Food Agric 86:2450–2457

    Article  CAS  Google Scholar 

  36. Martìn A, Hernàndez A, Aranda E, Casquete R, Velàzquez R, Bartolomé T, Còrdoba MG (2017) Impact of volatile composition on the sensorial attributes of dried paprikas. Food Res Int 100:691–697

    Article  Google Scholar 

  37. Acree T, Arn H Flavornet database. http://flavornet.org/flavornet.html. Accessed 14 Jun 2020.

  38. Wampler B, Barringer SA (2012) Volatile generation in bell peppers during frozen storage and thawing using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). J Food Sci 77:C677–C683

    Article  CAS  Google Scholar 

  39. Xu W, Xu Q, Chen J, Lu Z, Xia R, Li G, Xu Z, Ma Y (2011) Ligustrazine formation in Zhenjiang aromatic vinegar: changes during fermentation and storing process. J Sci Food Agr 91:1612–1617

    Article  CAS  Google Scholar 

  40. Zhu BF, Xu Y, Fan WL (2010) High-yield fermentative preparation of tetramethylpyrazine by Bacillus sp. using an endogenous precursor approach. J Ind Microbiol Biot 37:179–186

    Article  CAS  Google Scholar 

  41. Hellwig M, Henle T (2014) Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed 53:10316–10329

    Article  CAS  Google Scholar 

  42. Blanco Gomis D (2000) HPLC analysis of organic acids. In: Nollet LML (ed) Food analysis by HPLC. Marcel Dekker, New York, pp 477–492

    Google Scholar 

  43. Leffingwell D, Leffingwell JC (2004) Odor detection thresholds of GRAS flavor chemicals. www.leffingwell.com. Accessed 4 Feb 2020.

Download references

Funding

This research was supported by the ERA-NET action “CORE Organic Plus” [Contract no. 618107] in the framework of the “FaVOr-DeNonDe” Project [ID 849].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Bianchi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Human and animal participant rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 493 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, G., Lo Scalzo, R., Fibiani, M. et al. Quality assessment of dried organic bell peppers through composition and sensory analysis. Eur Food Res Technol 247, 1883–1897 (2021). https://doi.org/10.1007/s00217-021-03757-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03757-3

Keywords

Navigation