Skip to main content

Advertisement

Log in

Screening of Lactobacillus strains that enhance SCFA uptake in intestinal epithelial cells

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The objective was to screen Lactobacillus strains with strong survivability in oro-gastrointestinal tract and adhesion abilities of intestinal mucins and Caco-2 cells, and their effect on absorption of short-chain fatty acids (SCFAs) by epithelial cells was studied. The survival rate of Lactobacillus strains was studied after exposure to oral stress, gastric stress and intestinal stress successively, and then their adhesion ability was also researched. The model of intestinal epithelial cells absorbing SCFAs was established, which was used to evaluate the effect of Lactobacillus strains on Caco-2 cells absorption of SCFAs. The survival rate of Lactobacillus plantarum L58, L67, L97, L123, and L198 and Lactobacillus fermentum L146 was significantly higher than others in oro-gastrointestinal tract (P < 0.05), which also showed high adhesion to mucins and Caco-2 cells. The model was successfully established with the Caco-2 cell line, which formed a polarized cell monolayer and developed tight junctions with an appropriate permeability coefficient for phenol red lower than 1 × 10–6 cm/s after culturing for 15 days, and the viability of Caco-2 cells was significantly higher than other concentrations when the content of propionic acid or butyric acid was 1 mmol/L in the model. The propionic acid content in Caco-2 cells inoculated with L. plantarum L58, L67, L97, L123, and L198 was significantly higher than that of cells without L. plantarum inoculation (P < 0.05), and the butyric acid content in cells inoculated with L. fermentum L146 was significantly higher than that of cells without inoculation (P < 0.05). Our results highlight that L. plantarum L58, L67, L97, L123, L198 and L. fermentum L146 are more resistant to oro-gastrointestinal conditions and their high adhesion to the intestine can enhance SCFAs uptake in intestinal epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SCFAs:

Short-chain fatty acids

GC–MS:

Gas chromatography-mass spectrometer

OGT:

Oro-gastrointestinal

MRS:

De Man, Rogosa and Sharpe

PBS:

Phosphate buffered saline

CFDA-SE:

5-(And 6-) carboxyfluorescein diacetate, succinimidyl ester

MEM:

Modified Eagle's medium

FBS:

Fetal bovine serum

NEAA:

Nonessential amino acids

PSN:

Penicillin/streptomycin/neomycin

Ap:

Apical side

BL:

Basolateral

TEER:

Trans-epithelial electrical resistance

P app :

Apparent permeability coefficients

TEM:

Transmission electron microscopy

CCK-8:

Cell counting kit-8 reagent

RSD:

Relative standard deviation

QC:

Quality control

References

  1. Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BMJJolr (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

  2. Serino MJNRE (2019) SCFAs—the thin microbial metabolic line between good and bad. Nat Rev Endocrinol 15(6):318–319

  3. Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S (2018) Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome. https://doi.org/10.1186/s40168-018-0439-y

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S, Tsvetkov D, Krannich A, Wundersitz S, Avery EGJC (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Lippincott Williams & Wilkins 139(11):1407–1421  

  5. Wang Y (2017) Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67(7):gutjnl-2017–314050

  6. Li Z, Yi C-X, Katiraei S, Kooijman S, Zhou E, Chung CK, Gao Y, van den Heuvel JK, Meijer OC, Berbée JFJG (2018) Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67(7):1269–1279

  7. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H (2013) Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504(7480):446. https://doi.org/10.1038/nature12721

    Article  CAS  PubMed  Google Scholar 

  8. Hur KY, Lee M-SJD, journal m (2015) Gut microbiota and metabolic disorders. Diab Metab J 39(3):198–203

  9. Haenen D, Zhang J, Souza da Silva C, Bosch G, van der Meer IM, van Arkel J, van den Borne JJ, Pérez Gutiérrez O, Smidt H, Kemp BJTJon (2013) A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr 143(3):274–283

  10. Metzlerzebeli BU, Ganzle MG, Mosenthin R, Zijlstra RTJJoN (2012) Oat β-Glucan and Dietary Calcium and Phosphorus Differentially Modify Intestinal Expression of Proinflammatory Cytokines and Monocarboxylate Transporter 1 and Cecal Morphology in Weaned Pigs. J Nutr 142(4):668–674

  11. Tudela CV, Boudry C, Stumpff F, Aschenbach JR, Vahjen W, Zentek J, Pieper RJBJoN (2015) Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling. Br J Nutr 113(4):610–617

  12. Amritha GK, Venkateswaran GJP (2018) Use of lactobacilli in cereal-legume fermentation and as potential probiotics towards phytate hydrolysis. Probiotics Antimicrob Prot 10(4):647–653

  13. García-Ruiz A, de Llano DG, Esteban-Fernández A, Requena T, Bartolomé B, Moreno-Arribas MVJFm (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44:220–225

  14. Borthakur A, Anbazhagan AN, Kumar A, Raheja G, Singh V, Ramaswamy K, Dudeja PKJAJoP-G, Physiology L (2010) The probiotic Lactobacillus plantarum counteracts TNF-α-induced downregulation of SMCT1 expression and function. Amer J Physiol: Gastrointest Liver Physiol 299(4):G928–G934

  15. Kumar A, Alrefai WA, Borthakur A, Dudeja PKJAJoP-G, Physiology L (2015) Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells. Amer J Physiol: Gastrointest Liver Physiol 309(7):G602-G607

  16. Bengoa AA, Zavala L, Carasi P, Trejo SA, Bronsoms S, de los Ángeles Serradell M, Garrote GL, Abraham AGJFRI (2018) Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Res Inter 103:462–467

  17. Ljungh A, Wadstrm T (2006) Lactic acid bacteria as probiotics. Curr Issues Intest Microbiol 7(2):73–89

    CAS  PubMed  Google Scholar 

  18. Derrien M, van Passel MW, van de Bovenkamp JH, Schipper R, de Vos W, Dekker JJGm (2010) Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1(4):254–268

  19. Montoro BP, Benomar N, Gómez NC, Ennahar S, Horvatovich P, Knapp CW, Alonso E, Gálvez A, Abriouel HJFRI (2018) Proteomic analysis of Lactobacillus pentosus for the identification of potential markers of adhesion and other probiotic features. Food Res Inter 111:58–66

  20. Wu Z, Wang G, Wang W, Pan D, Peng L, Lian LJP (2018) Proteomics Analysis of the Adhesion Activity of Lactobacillus acidophilus ATCC 4356 Upon Growth in an Intestine‐Like pH Environment. Proteomics 18(5–6):1700308

  21. Eckert E, Lu L, Unsworth LD, Chen L, Xie J, Xu R (2016) Biophysical and in vitro absorption studies of iron chelating peptide from barley proteins. J Funct Foods 25:291–301. https://doi.org/10.1016/j.jff.2016.06.011

    Article  CAS  Google Scholar 

  22. Wang G, Zhang M, Zhao J, Xia Y, Lai PF, Ai L (2018) A surface protein from Lactobacillus plantarum increases the adhesion of lactobacillus strains to human epithelial cells. Front Microbiol 9:2858. https://doi.org/10.3389/fmicb.2018.02858

    Article  PubMed  PubMed Central  Google Scholar 

  23. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carriere F, Boutrou R, Corredig M, Dupont DJF, function (2014) A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct 5(6):1113–1124

  24. Buntin N, de Vos WM, Hongpattarakere TJAm, biotechnology (2017) Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats. Appl Microbiol Biotechnol 101(20):7663–7674

  25. Logan R, Robins A, Turner G, Cockayne A, Borriello S, Hawkey CJJoim (1998) A novel flow cytometric assay for quantitating adherence of Helicobacter pylori to gastric epithelial cells. J Immunol Methods 213(1):19–30

  26. Guo Y, Jiang X, Yang Y, Zhang J, Zeng X, Wu Z, Sun Y, Pan D (2018) Prevention of necrotizing enterocolitis through surface layer protein of Lactobacillus acidophilus CICC6074 reducing intestinal epithelial apoptosis. J Funct Foods 47:91–99. https://doi.org/10.1016/j.jff.2018.05.045

    Article  CAS  Google Scholar 

  27. Vila L, García-Rodríguez A, Cortés C, Marcos R, Hernández AJF, Toxicology C (2018) Assessing the effects of silver nanoparticles on monolayers of differentiated Caco-2 cells, as a model of intestinal barrier. Food Chem Toxicol 116:1–10

  28. Iwazaki A, Takahashi N, Miyake R, Hiroshima Y, Abe M, Yasui A, Imai K (2016) Effect of dietary fibers on losartan uptake and transport in Caco-2 cells. Biopharm Drug Dispos 37(4):212–219. https://doi.org/10.1002/bdd.2004

    Article  CAS  PubMed  Google Scholar 

  29. Jiang L, Long X, Meng Q (2013) Rhamnolipids enhance epithelial permeability in Caco-2 monolayers. Int J Pharm 446(1–2):130–135. https://doi.org/10.1016/j.ijpharm.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  30. Rashidi L, Vasheghani-Farahani E, Soleimani M, Atashi A, Rostami K, Gangi F, Fallahpour M, Tahouri MT (2014) A cellular uptake and cytotoxicity properties study of gallic acid-loaded mesoporous silica nanoparticles on Caco-2 cells. J Nanopart Res 16(3). https://doi.org/10.1007/s11051-014-2285-6

  31. Noach AB, Kurosaki Y, Blom-Roosemalen MC, de Boer AG, Breimer DDJIjop (1993) Cell-polarity dependent effect of chelation on the paracellular permeability of confluent Caco-2 cell monolayers. Int J Pharm 90(3):229–237

  32. Hubatsch I, Ragnarsson EG, Artursson PJNp (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc 2(9):2111

  33. Douny C, Dufourny S, Brose F, Verachtert P, Rondia P, Lebrun S, Marzorati M, Everaert N, Delcenserie V, Scippo M-LJJoCB (2019) Development of an analytical method to detect short-chain fatty acids by SPME-GC–MS in samples coming from an in vitro gastrointestinal model. J Chromatogr B 1124:188–196

  34. Vannini L, Lanciotti R, Baldi D, Guerzoni MJIJoFM (2004) Interactions between high pressure homogenization and antimicrobial activity of lysozyme and lactoperoxidase. Int J Food Microbio 94(2):123–135

  35. Mättö J, Alakomi H-L, Vaari A, Virkajärvi I, Saarela M (2006) Influence of processing conditions on Bifidobacterium animalis subsp. lactis functionality with a special focus on acid tolerance and factors affecting it. Int Dairy J 16(9):1029–1037. https://doi.org/10.1016/j.idairyj.2005.10.014

    Article  CAS  Google Scholar 

  36. Ruiz L, Margolles A, Sánchez BJFim (2013) Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front Microbiol 4:396

  37. Bustos AY, Raya R, de Valdez GF, Taranto MPJBl (2011) Efflux of bile acids in Lactobacillus reuteri is mediated by ATP. Biotechnol Lett 33(11):2265

  38. Dhanani A, Bagchi TJJoam (2013) The expression of adhesin EF‐Tu in response to mucin and its role in L actobacillus adhesion and competitive inhibition of enteropathogens to mucin. J Appl Microbio 115(2):546–554

  39. Glenting J, Beck HC, Vrang A, Riemann H, Ravn P, Hansen AM, Antonsson M, Ahrné S, Israelsen H, Madsen SJMr (2013) Anchorless surface associated glycolytic enzymes from Lactobacillus plantarum 299v bind to epithelial cells and extracellular matrix proteins.  Microbio Res 168(5):245–253

  40. de Souza BMS, Borgonovi TF, Casarotti SN, Todorov SD, Penna ALBJP, proteins a (2019) Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarella cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob Proteins 11(2):382–396

  41. Barnett AM, Roy NC, Cookson AL, McNabb WC (2018) Metabolism of caprine milk carbohydrates by probiotic bacteria and Caco-2:HT29(-)MTX epithelial co-cultures and their impact on intestinal barrier integrity. Nutrients. https://doi.org/10.3390/nu10070949

    Article  PubMed  PubMed Central  Google Scholar 

  42. de Vos WM(2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Nat Acad Sci USA 106(40):17193–17198

  43. Eshrati M, Amadei F, Staffer S, Stremmel W, Tanaka M (2019) Shear-enhanced dynamic adhesion of Lactobacillus rhamnosus GG on intestinal epithelia: correlative effect of protein expression and interface mechanics.  Langmuir: ACS J Surf Colloids 35(2):529–537. https://doi.org/10.1021/acs.langmuir.8b02931

    Article  CAS  PubMed  Google Scholar 

  44. Gratz S, Wu Q, El-Nezami H, Juvonen R, Mykkänen H, Turner PJA (2007) Lactobacillus rhamnosus strain GG reduces aflatoxin B1 transport, metabolism, and toxicity in Caco-2 cells.  Appl Environ Microbio 73(12):3958–3964

  45. Angelis ID, Turco L (2011) Caco-2 cells as a model for intestinal absorption. Curr Protoc Toxicol Chapter 20(Unit20):26. https://doi.org/10.1002/0471140856.tx2006s47

    Article  Google Scholar 

  46. Yanagihara S, Fukuda S, Ohno H, Yamamoto NJJoMF (2012) Exposure to probiotic Lactobacillus acidophilus L-92 modulates gene expression profiles of epithelial Caco-2 cells. J Med Food 15(6):511–519

  47. Karpowich NK, Huang HH, Smith PC, Hunt JFJJoBC (2003) Crystal structures of the BtuF periplasmic-binding protein for vitamin B12 suggest a functionally important reduction in protein mobility upon ligand binding. J Bio Chem 278(10):8429–8434

  48. Gopal E, Fei Y-J, Sugawara M, Miyauchi S, Zhuang L, Martin P, Smith SB, Prasad PD, Ganapathy VJJoBC (2004) Expression of slc5a8 in kidney and its role in Na+-coupled transport of lactate. J Bio Chem 279(43):44522–44532

  49. Coady MJ, Wallendorff B, Bourgeois F, Charron F, Lapointe J-YJBj (2007) Establishing a definitive stoichiometry for the Na+/monocarboxylate cotransporter SMCT1. Biophys J 93(7):2325–2331

  50. Borthakur A, Saksena S, Gill RK, Alrefai WA, Ramaswamy K, Dudeja PKJJocb (2008) Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: Involvement of NF‐κB pathway. J Cell Biochem 103(5):1452–1463

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (31701627, 31972094), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China National (19KJA140004, 17KJB550009), the National Key Research and Development Program of China (2019YFF0217602) and the Major Science and Technology Application Demonstration Program of Chengdu (2019-YF09-00055-SN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-xia Gu.

Ethics declarations

Conflict of interest

Da-wei Chen, Chun-meng Chen, Heng-xian Qu, Chen-yu Ren, Xian-tao Yan, Yu-jun Huang, Cheng-ran Guan, Chen-chen Zhang, Qi-ming Li and Rui-xia Gu declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Dw., Chen, Cm., Qu, Hx. et al. Screening of Lactobacillus strains that enhance SCFA uptake in intestinal epithelial cells. Eur Food Res Technol 247, 1049–1060 (2021). https://doi.org/10.1007/s00217-021-03686-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-021-03686-1

Keywords

Navigation