Skip to main content
Log in

The effect of cultivar and harvest season on the n-alkane and the n-alkene composition of virgin olive oil

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Linear hydrocarbons such as n-alkanes and n-alkenes are contained in the unsaponifiable fraction and are one of the less studied class of components in olive oil. This work was conducted in two subsequent harvest seasons (2016–2017 and 2017–2018) and attentioned the oils of nine olive cultivars: Cassanese, Coratina, Itrana, Leccino, Nociara, Ottobratica, Pendolino, Picholine and Sinopolese grown in the same geographical area (Rizziconi) of the region of Calabria (South Italy). Seven out of the nine cultivars were allochthonous for the geographical area where the experiment was conducted. Height n-alkanes with odd-carbon chain number, seven n-alkanes with even-carbon chain number and three n-alkenes were detected in the following elution order: heneicosane, docosane, tricosene, tricosane, tetracosene, tetracosane, pentacosene, pentacosane, hexacosane, heptacosane, octacosane, nonacosane, triacontane, entriacontane, dotriacontane, tritriacontane, tetratriacontane, pentatriacontane. The cultivar variable produced very high significant differences, this was particularly evident for Sinopolese oil showing a total n-alkanes and n-alkenes content of 260 and 290 mg/kg respectively for the first and the second harvest season, whereas Ottobratica and Picholine oils contained less than 100 mg/kg and Cassanese and Itrana oils contained less than 50 mg/kg. The highest n-alkene content was found in the oil of Ottobratica 1.97–161 mg/kg, Picholine 2.34–1.99 mg/kg and in Sinopolese 1.93–2.91 mg/kg. The odd/even ratio was less than 3 for Picholine and Sinopolese and less than 5 for all other cultivars. Docosane was 12.30 and 17.61 mg/kg for Sinopolese and less than 2 mg/kg for all other cultivars. Harvest season did not influence significantly the n-alkanes and n-alkenes content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Mc Gills AS, Moffat CF, Mackie PR, Cruickshank P (1993) The composition and concentration of n-alkanes in retail samples of edible oils. J Sci Food Agric 61:357–362

    Article  Google Scholar 

  2. Moreda W, Pérez-Camino MC, Cert A (2001) Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J Chromatogr A 936:159–171

    Article  CAS  Google Scholar 

  3. Tan YA, Kuntom A (1993) Gas chromatographic determination of hydrocarbons in crude pal kernel oil. J AOAC Int 76:371–376

    Article  CAS  Google Scholar 

  4. Tan YA, Kuntom A (1994) Hydrocarbons in crude palm kernel oil. J AOAC Int 77:67–73

    Article  CAS  Google Scholar 

  5. Giuffrè AM (2005) Changes in the n-alkane composition of avocado pulp oil (Persea americana, Miller) during fruit ripening. Grasas Aceites 56:75–78

    Article  Google Scholar 

  6. Herchi W, Harrabi S, Rochut S, Boukhchina S, Kallel H, Pepe C (2009) Characterization and quantification of the aliphatic hydrocarbon fraction during linseed development (Linum usitatissimum L.). J Agr Food Chem 57:5832–5836

    Article  CAS  Google Scholar 

  7. Giuffrè AM, Capocasale M (2016) n-Alkanes in tomato (Solanum lycopersicum L.) seed oil: the cultivar effect. Int Food Res J 23:979–985

    Google Scholar 

  8. Tejeda JF, García C, Petrón MJ, Andrės AI, Antequera T (2001) n-Alkane content of intramuscular lipids of Iberian fresh ham from different feeding systems and crossbreeding. Meat Sci 57:371–377

    Article  CAS  Google Scholar 

  9. Pétron MJ, Antequera T, Muriel E, Tejeda JF, Ventanas J (2004) Linear hydrocarbons content of intramuscular lipids of dry-cured Iberian ham. Meat Sci 66:295–300

    Article  Google Scholar 

  10. Shahidi F, Rubin LJ, D’Souza LA (1986) Meat flavour volatiles: a review of the composition technique of analysis and sensory evaluation. CRC Crit Rev Food Sci 24:219–227

    Google Scholar 

  11. Tulliez JE, Bories GF (1975) Métabolsme des hydrocarbures paraffiniques et naphténiques chez les animaux supérieurs. II. Accumulation et mobilisation chez le rat. Annales de la Nutrition et de l’Alimentation 29:213–221

    CAS  PubMed  Google Scholar 

  12. Mayes RW, Lamb CS (1984) The possible use of n-alkanes in herbage as indigestible faecal markers. P Nutr Soc 43:39A

    Google Scholar 

  13. Neukon HP, Grob K, Biedermann M, Noti A (2002) Food contamination by C20–C50 mineral paraffins from the atmosphere. Atmos Environ 36:4839–4847

    Article  Google Scholar 

  14. Grob K (2018) Mineral oil hydrocarbons in food: a review. Food Addit Contam A 35:1845–1860. https://doi.org/10.1080/19440049.2018.1488185

    Article  CAS  Google Scholar 

  15. Grob K, Bronz M (1994) Analytical problems in determining 3,5- stigmastadiene and campestadiene in edible oils. Riv Ital Sostanze Gr 71:291–295

    CAS  Google Scholar 

  16. Grob K, Artho A, Biedermann M, Egli J (1991) Food contamination by hydrocarbons from lubricating oils and release agents: determination by coupled LC-GC. Food Addit Contam 8:437–442

    Article  CAS  Google Scholar 

  17. EFSA Panel on Contaminants in the food chain (CONTAM). Scientific opinion on mineral oil hydrocarbons in food. EFSA J. 2012;10:2704.

  18. Giuffrè AM (2013) Influence of cultivar and harvest year on triglyceride composition of olive oils produced in Calabria (Southern Italy). Eur J Lipid Sci Tech 115:928–934. https://doi.org/10.1002/ejlt.201200390

    Article  CAS  Google Scholar 

  19. Giuffrè AM (2013) Influence of harvest year and cultivar on wax composition of olive oils. Eur J Lipid Sci Technol 115:549–555. https://doi.org/10.1002/ejlt.201200235

    Article  CAS  Google Scholar 

  20. Giuffrè AM, Louadj L (2013) Influence of crop season and cultivar on sterol composition of monovarietal olive oils in Reggio Calabria (Italy). Czech J Food Sci 31:256–263

    Article  Google Scholar 

  21. Giuffrè AM (2014) The effects of cultivar and harvest year on the fatty alcohol composition of olive oils from Southwest Calabria (Italy). Grasas Aceites 65:e011. https://doi.org/10.3989/gya.073913

    Article  CAS  Google Scholar 

  22. Consolidated Text on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. 01991R2568—IT—04.12.2016—031.005.

  23. Koprivnjak O, Conte LS (1996) Caratterizzazione della frazione idrocarburica e composizione degli acidi grassi degli oli d’oliva vergini provenienti dalla zona di Pola (Croazia). Riv Ital Sostanze Gr 73:317–320

    CAS  Google Scholar 

  24. Bortolomeazzi R, Berno P, Pizzale L, Conte LS (2001) Sesquiterpene, alkene and alkane hydrocarbons in virgin olive ols of different varieties and geographical origins. J Agr Food Chem 49:3278–3283

    Article  CAS  Google Scholar 

  25. Sakouhi F, Herchi W, Sbei K, Absalon C, Boukhchina S (2011) Characterisation and accumulation of squalene and n-alkanes in developing Tunisian Olea europaea L. fruits. Int J Food Sci Tech 46:2281–2286. https://doi.org/10.1111/j.1365-2621.2011.02747.x

    Article  CAS  Google Scholar 

  26. El Antari A, Hilal A, Boulouha B, El Moudni A (2000) Influence of variety, environment and cultural techniques on the characteristics of olive fruits and the chemical composition of extra virgin olive oil of Morocco. Olivae 80:29–36

    Google Scholar 

  27. Mihailova A, Abbado D, Kelly SD, Pedentchouk N (2015) The impact of environmental factors on molecular and stable isotope compositions of n-alkanes in Mediterranean extra virgin olive oils. Food Chem 173:114–121. https://doi.org/10.1016/j.foodchem.2014.10.003

    Article  CAS  PubMed  Google Scholar 

  28. Koprivnjak O, Moret S, Populin T, Lagazio C, Conte LS (2005) Variety differentiation of virgin olive oil based on n-alkane profile. Food Chem 90:603–608. https://doi.org/10.1016/j.foodchem.2004.04.019

    Article  CAS  Google Scholar 

  29. Troya F, Lerma-García MJ, Herrero-Martínez JM, Simó-Alfonso EF (2015) Classification of vegetable oils according to their botanical origin using n-alkane profiles established by GC–MS. Food Chem 167:36–39

    Article  CAS  Google Scholar 

  30. Koprivnjak O, Procida G, Favretto L (1997) Determination of endogenous aliphatic hydrocarbons of virgin olive oils of four autochthonous cultivars from Krk Island (Croatia). Food Technol Biotech 35:125–131

    CAS  Google Scholar 

  31. Mihailova A, Abbado D, Pedentchouk N (2015) Differences in n-alkane profiles between olives and olive leaves as potential indicators for the assessment of olive leaf presence in virgin olive oils. Eur J Lipid Sci Technol 117:1480–1485. https://doi.org/10.1002/ejlt.201400406

    Article  CAS  Google Scholar 

  32. Osorio Bueno E, Sánchez Casas J, Montaño García A, Gallardo González L (2005) Discriminating power of the hydrocarbon content from virgin olive oil of Extremadura cultivars. J Am Oil Chem Soc 82:1–61

    Article  Google Scholar 

  33. Gómez-Coca RB, del Carmen P-C, Moreda W (2016) Saturated hydrocarbon content in olive fruits and crude olive pomace oils. Food Addit Contam A 33:391–402. https://doi.org/10.1080/19440049.2015.1133934

    Article  CAS  Google Scholar 

  34. Eglinton G, Logan GA (1991) Molecular preservation. Phil Trans Roy Soc London B 333:315–328

    Article  CAS  Google Scholar 

  35. Bush RS, McInerney FA (2013) Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Ac 117:161–179

    Article  CAS  Google Scholar 

  36. Pineda M, Rojas M, Gálvez-Valdivieso G, Aguilar M (2017) The origin of aliphatic hydrocarbons in olive oil. J Sci Food Agric 97:4827–4834

    Article  CAS  Google Scholar 

  37. Biedermann M, Grob K (2015) Comprehensive two-dimensional gas chromatography for characterizing mineral oils in foods and distinguishing them from synthetic hydrocarbons. J Chromatogr A 1375:146–153. https://doi.org/10.1016/j.chroma.2014.11.064

    Article  CAS  PubMed  Google Scholar 

  38. Eglinton G, Hamilton RJ (1963) The distribution of alkanes. In: Swain T (ed) Chemical plant taxonomy. Academic Press, London

    Google Scholar 

  39. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by: Distretto ad alta tecnologia agroindustriale della Calabria AGRIFOODTECH—PROGETTO PON03PE_00090_2. Sustainable models and new technologies for olives and olive oil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Maria Giuffrè.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects which require permission from ethics committees or other institutions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giuffrè, A.M. The effect of cultivar and harvest season on the n-alkane and the n-alkene composition of virgin olive oil. Eur Food Res Technol 247, 25–36 (2021). https://doi.org/10.1007/s00217-020-03604-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03604-x

Keywords

Navigation