Skip to main content
Log in

Multiresponse kinetic modelling of 5-hydroxymethylfurfural and acrylamide formation in sesame (Sesamum indicum L.) seeds during roasting

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

This study aims to investigate the formation mechanism of 5-hydroxymethylfurfural and acrylamide in sesame seeds during roasting. Sesame seeds were roasted at 180, 200, and 220 °C for different time intervals, and changes in the concentration of sucrose, free amino acids, asparagine, 3-deoxyglucosone, 5-hydroxymethylfurfural, and acrylamide were monitored. Multiresponse kinetic modelling was used to develop a reaction model including possible ways of 5-hydroxymethylfurfural and acrylamide formation. According to this, sucrose degraded into glucose and fructofuranosyl cation under dry conditions and high temperatures during sesame roasting. The results of the kinetic model indicated that glucose mostly degraded to 3-deoxyglucosone formation and 5-hydroxymethylfurfural formation was mostly originated from fructofuranosyl cation. Additionally, acrylamide formation through the reaction of asparagine with 5-hydroxymethylfurfural was kinetically important than its reaction with glucose or 3-deoxyglucosone. Multiresponse kinetic modelling provided understanding the roles of intermediates giving rise to the formation of acrylamide and 5-hydroxymethylfurfural in roasted sesame seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Namiki M (2007) Nutraceutical functions of sesame: a review. Crit Rev Food Sci Nutr 47:651–673. https://doi.org/10.1080/10408390600919114

    Article  CAS  PubMed  Google Scholar 

  2. Tashiro T, Fukuda Y, Osawa T, Namiki M (1990) Oil and minor components of sesame (Sesamum indicum L.) strains. J Am Oil Chem Soc 67:508–511

    Article  CAS  Google Scholar 

  3. Namiki M (1995) The chemistry and physiological functions of sesame. Food Rev Int 11:281–329. https://doi.org/10.1080/87559129509541043

    Article  CAS  Google Scholar 

  4. Elleuch M, Bedigian D, Zitoun A (2011) Sesame (Sesamum indicum L.) seeds in food, nutrition, and health. In Nuts and seeds in health and disease prevention. Academic Press, New York, pp 1029–1036

    Book  Google Scholar 

  5. Yaacoub R, Saliba R, Nsouli B et al (2008) Formation of lipid oxidation and isomerization products during processing of nuts and sesame seeds. J Agric Food Chem 56:7082–7090. https://doi.org/10.1021/jf800808d

    Article  CAS  PubMed  Google Scholar 

  6. Durmaz G, Gökmen V (2010) Impacts of roasting oily seeds and nuts on their extracted oils. Lipid Technol 22:179–182. https://doi.org/10.1002/lite.201000042

    Article  CAS  Google Scholar 

  7. International Agency for Research on Cancer (IARC) (1994) Acrylamide. EIARC Monogr Eval Carcinog risk Chem Hum 60:389–433

    Google Scholar 

  8. Yaylayan VA, Wnorowski A, Perez Locas C (2003) Why asparagine needs carbohydrates to generate acrylamide. J Agric Food Chem 51:1753–1757. https://doi.org/10.1021/jf0261506

    Article  CAS  PubMed  Google Scholar 

  9. Mottram DS, Wedzicha BL, Dodson AT (2002) Food chemistry: acrylamide is formed in the Maillard reaction. Nature 419:448–449. https://doi.org/10.1038/419448a

    Article  CAS  PubMed  Google Scholar 

  10. Stadler RH, Blank I, Varga N et al (2002) Food chemistry: acrylamide from Maillard reaction products. Nature 419:449–450. https://doi.org/10.1038/419449a

    Article  CAS  PubMed  Google Scholar 

  11. Tareke E, Rydberg P, Karlsson P et al (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006. https://doi.org/10.1021/jf020302f

    Article  CAS  PubMed  Google Scholar 

  12. Amrein TM, Andres L, Schönbächler B et al (2005) Acrylamide in almond products. Eur Food Res Technol 221:14–18. https://doi.org/10.1007/s00217-005-1156-x

    Article  CAS  Google Scholar 

  13. Amrein TM, Lukac H, Andres L et al (2005) Acrylamide in roasted almonds and hazelnuts. J Agric Food Chem 53:7819–7825. https://doi.org/10.1021/jf051132k

    Article  CAS  PubMed  Google Scholar 

  14. Hollnagel A, Kroh LW (2002) Formation of α-dicarbonyl fragments from mono- and disaccharides under caramelization and Maillard reaction conditions. Zeitschrift Für Leb Forsch A 207:50–54. https://doi.org/10.1007/s002170050294

    Article  Google Scholar 

  15. Morales FJ (2009) Hydroxymethylfurfural (HMF) and related compounds. In: Stadler RH, Lineback DR (eds) Process-induced food toxicants: occurrence, formation, mitigation, and health risks. Wiley, Hoboken, pp 135–174

    Google Scholar 

  16. Svendsen C, Husøy T, Glatt H et al (2009) 5-Hydroxymethylfurfural and 5-sulfooxymethylfurfural increase adenoma and flat ACF number in the intestine of Min/+ mice. Anticancer Res 29:1921–1926

    CAS  PubMed  Google Scholar 

  17. Agila A, Barringer S (2012) Effect of roasting conditions on color and volatile profile including HMF level in sweet almonds (Prunus dulcis). J Food Sci 77:C461–C468. https://doi.org/10.1111/j.1750-3841.2012.02629.x

    Article  CAS  PubMed  Google Scholar 

  18. Martins SIFS, Jongen WMF, Van Boekel MAJS (2000) A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci Technol 11:364–373. https://doi.org/10.1016/S0924-2244(01)00022-X

    Article  CAS  Google Scholar 

  19. Knol JJ, Linssen JPH, van Boekel MAJS (2010) Unravelling the kinetics of the formation of acrylamide in the Maillard reaction of fructose and asparagine by multiresponse modelling. Food Chem 120:1047–1057. https://doi.org/10.1016/j.foodchem.2009.11.049

    Article  CAS  Google Scholar 

  20. Kocadaǧlı T, Gökmen V (2016) Multiresponse kinetic modelling of Maillard reaction and caramelisation in a heated glucose/wheat flour system. Food Chem 211:892–902. https://doi.org/10.1016/j.foodchem.2016.05.150

    Article  CAS  PubMed  Google Scholar 

  21. Kocadaǧlı T, Özdemir KS, Gökmen V (2013) Effects of infusion conditions and decaffeination on free amino acid profiles of green and black tea. Food Res Int 53:720–725. https://doi.org/10.1016/j.foodres.2012.10.010

    Article  CAS  Google Scholar 

  22. Kocadağlı T, Koray Palazoğlu T, Gökmen V (2012) Mitigation of acrylamide formation in cookies by using Maillard reaction products as recipe modifier in a combined partial conventional baking and radio frequency post-baking process. Eur Food Res Technol 235:711–717. https://doi.org/10.1007/s00217-012-1804-x

    Article  CAS  Google Scholar 

  23. Kocadağlı T, Göncüoglu N, Hamzalıoğlu A, Gökmen V (2012) In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation. Food Funct 3:970–975. https://doi.org/10.1039/c2fo30038a

    Article  CAS  PubMed  Google Scholar 

  24. Degen J, Hellwig M, Henle T (2012) 1,2-Dicarbonyl compounds in commonly consumed foods. J Agric Food Chem 60:7071–7079. https://doi.org/10.1021/jf301306g

    Article  CAS  PubMed  Google Scholar 

  25. Kocadağlı T, Gökmen V (2014) Investigation of α-dicarbonyl compounds in baby foods by high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. J Agric Food Chem 62:7714–7720. https://doi.org/10.1021/jf502418n

    Article  CAS  PubMed  Google Scholar 

  26. Van Boekel MAJS (1996) Statistical aspects of kinetic modeling for food science problems. J Food Sci 61:477–485. https://doi.org/10.1111/j.1365-2621.1996.tb13138.x

    Article  Google Scholar 

  27. Fallico B, Arena E, Zappalà M (2003) Roasting of hazelnuts. Role of oil in colour development and hydroxymethylfurfural formation. Food Chem 81:569–573. https://doi.org/10.1016/S0308-8146(02)00497-1

    Article  CAS  Google Scholar 

  28. Göncüoğlu Taş N, Gökmen V (2017) Maillard reaction and caramelization during hazelnut roasting: a multiresponse kinetic study. Food Chem 221:1911–1922. https://doi.org/10.1016/j.foodchem.2016.11.159

    Article  CAS  PubMed  Google Scholar 

  29. EFSA (European Food Safety Authority) (2015) Scientific opinion on acrylamide in food. EFSA J 13:4104. https://doi.org/10.2903/j.efsa.2015.4104

    Article  CAS  Google Scholar 

  30. Şenyuva HZ, Gökmen V (2005) Study of acrylamide in coffee using an improved liquid chromatography mass spectrometry method: investigation of colour changes and acrylamide formation in coffee during roasting. Food Addit Contam 22:214–220. https://doi.org/10.1080/02652030500109834

    Article  CAS  PubMed  Google Scholar 

  31. Nguyen HT, Van Der Fels-Klerx HJ, Peters RJB, Van Boekel MAJS (2016) Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: effects of sugar type. Food Chem 192:575–585

    Article  CAS  Google Scholar 

  32. Hodge JE (1953) Chemistry of browning reactions in model systems. J Agric Food Chem 1:928–943. https://doi.org/10.1021/jf60015a004

    Article  CAS  Google Scholar 

  33. Van Boekel MAJS (1998) Effect of heating on Maillard reaction in milk. Food Chem 62:403–414

    Article  Google Scholar 

  34. Martins SIFS, Van Boekel MAJS (2005) A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chem 90:257–269. https://doi.org/10.1016/j.foodchem.2004.04.006

    Article  CAS  Google Scholar 

  35. Vyazovkin S (2016) A time to search: finding the meaning of variable activation energy. Phys Chem Chem Phys 18:18643–18656. https://doi.org/10.1039/c6cp02491b

    Article  CAS  PubMed  Google Scholar 

  36. Locas CP, Yaylayan VA (2008) Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. J Agric Food Chem 56:6717–6723. https://doi.org/10.1021/jf8010245

    Article  CAS  Google Scholar 

  37. Belitz HD, Grosch W, Schieberle P (2009) Food chemistry, 4th edn. Springer, Berlin

    Google Scholar 

  38. Yaylayan VA (2003) Recent advances in the chemistry of Strecker degradation and Amadori rearrangement: implications to aroma and color formation. Food Sci Technol Res 9:1–6. https://doi.org/10.3136/fstr.9.1

    Article  CAS  Google Scholar 

  39. Kroh LW, Fiedler T, Wagner J (2008) α-Dicarbonyl compounds—key intermediates for the formation of carbohydrate-based melanoidins. Ann N Y Acad Sci 1126:210–215. https://doi.org/10.1196/annals.1433.058

    Article  CAS  PubMed  Google Scholar 

  40. Zyzak DV, Sanders RA, Stojanovic M et al (2003) Acrylamide formation mechanism in heated foods. J Agric Food Chem 51:4782–4787. https://doi.org/10.1021/jf034180i

    Article  CAS  PubMed  Google Scholar 

  41. Gökmen V, Kocadaǧlı T, Göncüoǧlu N, Mogol BA (2012) Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine. Food Chem 132:168–174. https://doi.org/10.1016/j.foodchem.2011.10.048

    Article  CAS  PubMed  Google Scholar 

  42. Stadler RH, Robert F, Riediker S et al (2004) In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J Agric Food Chem 52:5550–5558. https://doi.org/10.1021/jf0495486

    Article  CAS  PubMed  Google Scholar 

  43. Hamzalıoğlu A, Gökmen V (2020) 5-Hydroxymethylfurfural accumulation plays a critical role on acrylamide formation in coffee during roasting as confirmed by multiresponse kinetic modelling. Food Chem. https://doi.org/10.1016/j.foodchem.2020.126467

    Article  PubMed  Google Scholar 

  44. Zamora R, Hidalgo FJ (2008) Contribution of lipid oxidation products to acrylamide formation in model systems. J Agric Food Chem 56:6075–6080. https://doi.org/10.1021/jf073047d

    Article  CAS  PubMed  Google Scholar 

  45. Capuano E, Oliviero T, Açar ÖÇ et al (2010) Lipid oxidation promotes acrylamide formation in fat-rich model systems. Food Res Int 43:1021–1026. https://doi.org/10.1016/j.foodres.2010.01.013

    Article  CAS  Google Scholar 

  46. Wan Y, Li H, Fu G et al (2015) The relationship of antioxidant components and antioxidant activity of sesame seed oil. J Sci Food Agric 95:2571–2578. https://doi.org/10.1002/jsfa.7035

    Article  CAS  PubMed  Google Scholar 

  47. Yoshida H, Takagi S (1997) Effects of seed roasting temperature and time on the quality characteristics of sesame (Sesamum indicum) oil. J Sci Food Agric 75:19–26. https://doi.org/10.1002/(SICI)1097-0010(199709)75:1<19:AID-JSFA830>3.0.CO;2-C

    Article  CAS  Google Scholar 

  48. Lee SW, Jeung MK, Park MH et al (2010) Effects of roasting conditions of sesame seeds on the oxidative stability of pressed oil during thermal oxidation. Food Chem 118:681–685. https://doi.org/10.1016/j.foodchem.2009.05.040

    Article  CAS  Google Scholar 

  49. Liu X, Wang S, Masui E et al (2019) Analysis of the dynamic decomposition of unsaturated fatty acids and tocopherols in commercial oils during deep frying. Anal Lett 52:1991–2005. https://doi.org/10.1080/00032719.2019.1590378

    Article  CAS  Google Scholar 

  50. Berk E, Hamzalıoğlu A, Gökmen V (2019) Investigations on the Maillard reaction in sesame (Sesamum indicum L.) seeds induced by roasting. J Agric Food Chem 67:4923–4930. https://doi.org/10.1021/acs.jafc.9b01413

    Article  CAS  PubMed  Google Scholar 

  51. Karademir Y, Göncüoğlu N, Gökmen V (2013) Investigation of heat induced reactions between lipid oxidation products and amino acids in lipid rich model systems and hazelnuts. Food Funct 4:1061. https://doi.org/10.1039/c3fo30364k

    Article  CAS  PubMed  Google Scholar 

  52. Arribas-Lorenzo G, Fogliano V, Morales FJ (2009) Acrylamide formation in a cookie system as influenced by the oil phenol profile and degree of oxidation. Eur Food Res Technol 229:63–72. https://doi.org/10.1007/s00217-009-1026-z

    Article  CAS  Google Scholar 

  53. Talley EA, Fitzpatrick TJ, Porter WL (1959) Formation of fumaramic acid from asparagine in phosphate buffer. J Am Chem Soc 81:174–175. https://doi.org/10.1021/ja01510a040

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

EB: methodology, formal analysis, investigation, data curation, visualization, and writing—original draft; AH: methodology, software, validation, investigation, writing—reviewing and editing, and visualization; VG: conceptualization, methodology, resources, supervision, project administration, writing—reviewing, and editing.

Corresponding author

Correspondence to Vural Gökmen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This study does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Differential equations, which are built from the kinetic model given in Fig. 1.

$$ \frac{{{\text{d}}\left[ {{\text{SUC}}} \right]}}{{{\text{d}}t}} = - k_{1} \left[ {{\text{SUC}}} \right] $$
(1)
$$ \frac{{{\text{d}}\left[ {{\text{GLU}}} \right]}}{{{\text{d}}t}} = k_{1} \left[ {{\text{SUC}}} \right] - k_{2} \left[ {{\text{GLU}}} \right]\left[ {{\text{AA}}} \right] - k_{8} \left[ {{\text{GLU}}} \right]\left[ {{\text{ASN}}} \right] - k_{5} \left[ {{\text{GLU}}} \right] $$
(2)
$$ \frac{{{\text{d}}\left[ {{\text{FFC}}} \right]}}{{{\text{d}}t}} = k_{1} \left[ {{\text{SUC}}} \right] - k_{3} \left[ {{\text{FFC}}} \right] $$
(3)
$$ \frac{{{\text{d}}\left[ {{\text{HMF}}} \right]}}{{{\text{d}}t}} = k_{3} \left[ {{\text{FFC}}} \right] + k_{6} \left[ {3 - {\text{DG}}} \right] - k_{7} \left[ {{\text{HMF}}} \right]\left[ {{\text{ASN}}} \right] - k_{4} \left[ {{\text{HMF}}} \right] $$
(4)
$$ \frac{{{\text{d}}\left[ {3 - {\text{DG}}} \right]}}{{{\text{d}}t}} = k_{5} \left[ {{\text{GLU}}} \right] - (k_{6} + k_{{11}} )\left[ {3 - {\text{DG}}} \right] $$
(5)
$$ \frac{{{\text{d}}\left[ {{\text{ACR}}} \right]}}{{{\text{d}}t}} = k_{7} \left[ {{\text{HMF}}} \right]\left[ {{\text{ASN}}} \right] + k_{8} \left[ {{\text{GLU}}} \right]\left[ {{\text{ASN}}} \right] - k_{{10}} \left[ {{\text{ASN}}} \right] $$
(6)
$$ \frac{{{\text{d}}\left[ {{\text{ASN}}} \right]}}{{{\text{d}}t}} = - k_{7} \left[ {{\text{HMF}}} \right]\left[ {{\text{ASN}}} \right] - k_{8} \left[ {{\text{GLU}}} \right]\left[ {{\text{ASN}}} \right] - k_{9} \left[ {{\text{ACR}}} \right] $$
(7)
$$ \frac{{{\text{d}}\left[ {{\text{AA}}} \right]}}{{{\text{d}}t}} = - k_{2} \left[ {{\text{GLU}}} \right]\left[ {{\text{AA}}} \right] $$
(8)
$$ \frac{{{\text{d}}\left[ {{\text{MRP}}} \right]}}{{{\text{d}}t}} = k_{2} \left[ {{\text{GLU}}} \right]\left[ {{\text{AA}}} \right] $$
(9)
$$ \frac{{{\text{d}}\left[ {P_{1} } \right]}}{{{\text{d}}t}} = k_{4} \left[ {{\text{HMF}}} \right] $$
(10)
$$ \frac{{{\text{d}}\left[ {P_{2} } \right]}}{{{\text{d}}t}} = k_{9} \left[ {{\text{ACR}}} \right] $$
(11)
$$ \frac{{{\text{d}}\left[ {P_{3} } \right]}}{{{\text{d}}t}} = k_{{10}} \left[ {{\text{ASN}}} \right] $$
(12)
$$\frac{{{\text{d}}\left[ {P_{4} } \right]}}{{{\text{d}}t}} = k_{{11}} \left[ {3 - {\text{DG}}} \right]. $$
(13)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berk, E., Hamzalıoğlu, A. & Gökmen, V. Multiresponse kinetic modelling of 5-hydroxymethylfurfural and acrylamide formation in sesame (Sesamum indicum L.) seeds during roasting. Eur Food Res Technol 246, 2399–2410 (2020). https://doi.org/10.1007/s00217-020-03583-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03583-z

Keywords

Navigation