Skip to main content
Log in

Characterization of an exocellular ethanol-tolerant β-glucosidase from Quambalaria cyanescens isolates from unripened grapes

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Quambalaria cyanescens was positively identified on the surface of unripened grapes by physiological and molecular techniques; this is the first work describing the isolation of this fungus in European grapes and all of them produced an exocellular β-glucosidase. Once isolates with higher activity were selected, the enzyme has been qualitatively and quantitatively determined and characterized, by spectrophotometric methods, based on its biotechnological properties Exocellular β-glucosidase produced by Q. cyanescens is inhibited by glucose but is an ethanol-tolerant enzyme and its activity is independent of the pH value. Divalent cations, mainly Ca2+, highly increase enzymatic activity. This is the first work describing the isolation, identification and characterization of Q. cyanescens in grapes. Although there is growing interest in the search for new fungal β-glucosidases, the vast majority of studies were performed with imperfect fungi, and there are scant reports that deal with basidiomycetous fungi, not only for biotechnological purposes but also for physiological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Pearson RC, Goheen AC (1988) Compendium of grape diseases. APS Press, St Paul

    Google Scholar 

  2. Emmett RW, Harris AR, Taylor RH, McGechan JK (1992) Grape diseases and vineyard protection. In: Coombe BG, Dry PR (eds) Viticulture, Vol. 2: Practices. pp 242–243. Adelaide, Australia

  3. De Beer JW, Begerow D, Bauer R, Pegg GS, Crous PW, Wingfield MJ (2006) Phylogeny of the Quambalariaceae fam. nov., including important Eucalyptus pathogens in South Africa and Australia. Stud Micol 55:289–298

    Google Scholar 

  4. Fan X, Xiao M, Kong F, Kudinha T, Wang H, Xu YC (2014) A rare fungal species, Quambalaria cyanescens, isolated from a patient after augmentation mammoplasty-environmental contaminant or pathogen? PLoS ONE 9:1–8

    Google Scholar 

  5. De Hoog GS, De Vries GA (1973) Two new species of Sporothrix and their relation to Blastobotrys nivea. Antonie Van Leeuwenhoek 39:515–520

    PubMed  Google Scholar 

  6. Moore RT (1987) Micromorphology of yeasts and yeast-like fungi and its taxonomic implications. Stud Mycol 30:203–226

    Google Scholar 

  7. Sigler L, Harris JL, Dixon DM, Flis AL, Salkin IF, Kemna M, Duncan RA (1990) Microbiology and potential virulence of Sporothrix cyanescens, a fungus rarely isolated from blood and skin. J Clin Microbiol 28:1009–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kolarík M, Sláviková E, Pazoutová S (2006) The taxonomic and ecological characterisation of the clinically important heterobasiodiomycete Fugomyces cyanescens and its association with bark beetles. Czech Mycol 58:81–98

    Google Scholar 

  9. Maicas S, Mateo JJ (2005) Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review. Appl Microbiol Biotechnol 67:322–335

    CAS  PubMed  Google Scholar 

  10. Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    CAS  PubMed  Google Scholar 

  11. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic Press Inc, New York, pp 315–322

    Google Scholar 

  12. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeast from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    CAS  PubMed  Google Scholar 

  13. Romero AM, Mateo JJ, Maicas S (2012) Characterization of an ethanol tolerant 1,4-β-xylosidase produced by Pichia membranifaciens. Lett Appl Microbiol 55:354–361

    CAS  PubMed  Google Scholar 

  14. López MC, Mateo JJ, Maicas S (2015) Screening of β-glucosidase and β-xylosidase activities in four non-Saccharomyces yeast isolates. J Food Sci 80:1696–1704

    Google Scholar 

  15. Milanovic V, Comitini F, Ciani M (2013) Grape berry yeast communities: influence of fungicide treatments. Int J Food Microbiol 161:240–246

    CAS  PubMed  Google Scholar 

  16. Ocón E, Gutiérrez AR, Garijo P, López R, Santamaría P (2010) Presence of non-Saccharomyces yeasts in cellar equipment and grape juice during harvest time. Food Microbiol 27:1023–1027

    PubMed  Google Scholar 

  17. Kubátová A, Kolarík M (2007) Culture collection of fungi (CCF) in Prague original isolates accessed during. Novit Bot Univ Carol 18:91–111

    Google Scholar 

  18. Stodulková E, Císarová I, Kolarik M, Chudíckova M, Novák P, Man P, Kuzma M, Pavlú B, Cerný J, Flieger M (2015) Biologically active metabolites produced by the Basidiomycete Quambalaria cyanescens. PLoS ONE 10:1–12

    Google Scholar 

  19. Kuan CS, Yew SM, Toh YF, Chan CL, Lim SK, Lee KW, Na SL, Hoh C, Yee WY, Ng KP (2015) Identification and characterization of a rare fungus, Quambalaria cyanescens, isolated from the peritoneal fluid of a patient after nocturnal intermittent peritoneal dialysis. PLoS ONE 10:1–15

    Google Scholar 

  20. Jackson L, Klotz SA, Normand RE (1990) A pseudoepidemic of Sporothrix cyanescens pneumonia occurring during renovation of a bronchoscopy suite. J Medic Veter Mycol 28:455–459

    CAS  Google Scholar 

  21. Hernandez-Guzman A, Flores-Martıinez A, Ponce-Noyola P, Julio C, Castro V (2016) Purification and characterization of an extracellular β-glucosidase from Sporothrix schenckii. FEBS Open Bio 6:1067–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. N Biotechnol 25:437–441

    CAS  PubMed  Google Scholar 

  23. Acosta-Rodriguez I, Piñon-Escobedo C, Zavala-Paamo MG, Lopez-Romero E, Cano-Camacho H (2005) Degradation of cellulose by the bean-pathogenic fungus Colletotrichum lindemuthianum. Production of extracellular cellulolytic enzymes by cellulose induction. Antonie Van Leeuwenhoek 87:301–310

    CAS  PubMed  Google Scholar 

  24. Carle-Urioste JC, Escobar-Vera J, El-Gogary S, Henrique-Silva F, Torigoi E, Crivellaro O, Herrera-Estrella A, El-Dorry H (1997) Cellulase induction in Trichoderma reesei by cellulose requires its own basal expression. J Biol Chem 272:10169–10174

    CAS  PubMed  Google Scholar 

  25. Vìtrovský T, Baldrian P, Gabriel J (2012) Extracellular enzymes of the white-rot fungus Fomes fomentarius and purification of 1,4-β-glucosidase. Appl Biochem Biotechnol 169:100–109

    Google Scholar 

  26. Morais H, Ramos C, Matos N, Forgacs E, Cserhati T, Almeida V et al (2002) Liquid chromatographic and electrophoretic characterisation of extracellular β-glucosidase of Pleurotus ostreatus grown in organic waste. J Chromatogr B 770:111–119

    CAS  Google Scholar 

  27. Sørensen A, Lübec PS, Teller PJ, Ahring BK (2011) β-Glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass. Can J Microbiol 57:638–650

    PubMed  Google Scholar 

  28. Kanunfre CC, Zancan GT (1998) Physiology of exolaccase production by Telephora terrestris. FEMS Microbiol Ecol 16:151–156

    Google Scholar 

  29. Baffi M, Tobal T, Lago J, Leite R, Boscolo M, Gomes E, Da-Silva R (2011) A novel β-glucosidase from Sporiobolus pararoseus: characterization and application in winemaking. J Food Sci 76:997–1002

    Google Scholar 

  30. Manzanares P, Ramon D, Querol A (1999) Screening of non-Saccharomyces wine yeasts for the production of β-d-xylosidase activity. Intl J Food Microbiol 46:105–112

    CAS  Google Scholar 

  31. Spagna G, Barbagallo RN, Palmeri R, Restuccia C, Giudici P (2002) Properties of endogenous β-glucosidase of a Pichia anomala strain isolated from Sicilian musts and wines. Enz Microbiol Technol 31:1036–1041

    CAS  Google Scholar 

  32. Yan TR, Lin CL (1997) Purification and characterization of a glucose-tolerant β-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotechnol Biochem 61:165–170

    Google Scholar 

  33. Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Saibi W, Gargour A (2011) Purification and biochemical characterization of an atypical β-glucosidase from Stachybotrys microspore. J Mol Catal B Enzym 72:107–115

    CAS  Google Scholar 

  35. Souza FHM, Nascimento CV, Rosa JC, Masui DC, Leone FA, Jorge JA, Furriel RPM (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45:272–278

    CAS  Google Scholar 

  36. Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJ, Reynolds CD, Sihanonth P (2007) Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.:Fr.) Rehm. FEMS Microbiol Lett 270:162–170

    CAS  PubMed  Google Scholar 

  37. Kim YA, Yoon KH (2010) Characterization of a Paenibacillus woosongensis beta–Xylosidase/alpha-Arabinofuranosidase produced by recombinant Escherichia coli. J Microbiol Biotechnol 20:1711–1716

    CAS  PubMed  Google Scholar 

  38. Zhou J, Bao L, Chang L, Zhou Y, Hong L (2012) Biochemical and kinetic characterization of GH43 β-d-xylosidase/α-l-arabinofuranosidase and GH30 α–l–arabinofuranosidase/β-d-xylosidase from rumen metagenome. J Ind Microbiol Biotechnol 39:143–152

    CAS  PubMed  Google Scholar 

  39. Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, Bhat MK (1994) Purification and characterisation of an extracellular β-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum. Eur J Biochem 224:379–385

    CAS  PubMed  Google Scholar 

  40. Yazdi MT, Khosravi AA, Nemati M, Davoodi N (2003) Purification and characterization of two intracellular β-glucosidases from the Neurospora crassa mutant cell-1. World J Microbiol Biotechnol 19:79–84

    CAS  Google Scholar 

  41. Lin J, Pillay B, Singh S (1999) Purification and biochemical characteristics of β-d-glucosidase from a thermophilic fungus, Thermomyces lanuginosus–SSBP. Biotechnol Appl Biochem 30:81–87

    CAS  PubMed  Google Scholar 

  42. Wei DL, Chang TH, Lin YW, Chuang CL, Jong SC (1992) Production of cellulolytic enzymes from Xylaria and Hypoxylon species of Xylariaceae. World J Microbiol Biotech 8:141–146

    CAS  Google Scholar 

  43. Saha BC, Freer SN, Bothast RJ (1994) Production, purification and properties of a thermostable β-glucosidase from a color variant strain of Aureobasidium pullulans. Appl Environ Microbiol 10:3774–3780

    Google Scholar 

  44. Madrigal T, Maicas S, Mateo JJ (2013) Glucose and ethanol tolerant enzymes produced by Pichia (Wickerhamomyces) isolates from enological ecosystems. Am J Enol Vitic 64:126–133

    CAS  Google Scholar 

  45. Bhatia Y, Mishra S, Bisaria VS (2002) Microbial β-glucosidases: cloning, properties and applications. Crit Rev Biotechnol 22:375–407

    CAS  PubMed  Google Scholar 

  46. Nguyen NP, Lee KM, Lee KM, Kim IW, Kim YS, Jeya M, Lee JK (2010) One-step purification and characterization of a beta-1,4-glucosidase from a newly isolated strain of Stereum hirsutum. Appl Microbiol Biotechnol 87:2107–2116

    CAS  PubMed  Google Scholar 

  47. Yanai T, Sato M (2001) Purification and characterization of an β-d-xylosidase from Candida utilis IFO 0639. Biosci Biotechnol Biochem 65:527–533

    CAS  PubMed  Google Scholar 

  48. Mateo JJ, Peris L, Ibañez C, Maicas S (2011) Characterization of glycolytic activities from non-Saccharomyces yeasts isolated from Bobal musts. J Ind Microbiol Biotechnol 38:347–354

    CAS  PubMed  Google Scholar 

  49. Lenartovicz V, Marques De Souza CG, Guillen Moreira F, Peralta RM (2003) Temperature and carbon source affect the production and secretion of a thermostable β-xylosidase by Aspergillus fumigatus. Proc Biochem 38:1775–1780

    CAS  Google Scholar 

  50. Yan QJ, Wang L, Jiang ZQ, Yang SQ, Zhu HF, Li LT (2008) A xylose-tolerant β-xylosidase from Paecilomyces thermophila: characterization and its co-action with the endogenous xylanase. Bioresour Technol 99:5402–5410

    CAS  PubMed  Google Scholar 

  51. Inglin M, Feinberg BA, Loewenberg JR (1980) Partial purification and characterization of a new intracellular β-glucosidase of Trichoderma reesei. Biochem J 185:515–519

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jen W, Wang W, Lin M, Lin C, Liaw Y, Chang W et al (2011) Structural and functional analysis of three β-d-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. J Struct Biol 173:46–56

    Google Scholar 

  53. Chen HL, Chen YC, Lu MYJ, Chang JJ, Wang HC, Ruan SK et al (2012) A highly efficient β-glucosidase from a buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnol Biofuels 5:24

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to J. J. Mateo.

Ethics declarations

Conflicts of interest

No conflict of interest declared.

Compliance with ethics requirements

Our article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Culture of Q. cyanescens CECT 20968 on Malt Agar plate

Figure S2

Optical microscopy observation of Q. cyanescens CECT 20968

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateo, J.J., Andreu, L. Characterization of an exocellular ethanol-tolerant β-glucosidase from Quambalaria cyanescens isolates from unripened grapes. Eur Food Res Technol 246, 2349–2357 (2020). https://doi.org/10.1007/s00217-020-03578-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03578-w

Keywords

Navigation