Skip to main content
Log in

Rapid discrimination of Italian Prosecco wines by head-space gas-chromatography basing on the volatile profile as a chemometric fingerprint

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Prosecco wine is one of the most important products of the Italian oenological landscape. Its production is strictly regulated by several disciplinary. Thus, it is important to verify the quality of the final product, to defend the uniqueness of this wine. This work describes a rapid method to discriminate among varieties of Italian Prosecco wine using the volatile-fraction distribution as an untargeted fingerprint. The volatile profile corresponds to gas-chromatograms obtained in head-space mode. Principal components analysis of chromatograms allows discriminating the Prosecco samples depending on geographical origin, cultivation practices, and wine-making technologies. In particular, conventional vs. biological agriculture and manual vs. mechanical harvesting give well-separated clusters when projected on a scores plot. Influence plots allow evaluating which variables are the most effective to describe the differences between oenological classes, which are declared in the label and coded in the disciplinary of origin denomination. The identification of discriminating molecules in the volatile profile is also performed by Kovats indexes. Thus, possible chemical markers for the classification of Italian Prosecco wines are appointed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Data are not available.

References

  1. González-Barreiro C, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2015) Wine aroma compounds in grapes: a critical review. Crit Rev Food Sci Nutr 55:202–218

    PubMed  Google Scholar 

  2. Tomasi D, Gaiotti F, Jones GV (2013) The power of the terroir: the case study of prosecco wine. ISBN 9783034806282

  3. Moret I, Scarponi G, Cescon P (1994) Chemometric characterization and classification of five Venetian white wines. J Agric Food Chem 42(5):1143–1153

    CAS  Google Scholar 

  4. Pisano PL, Silva MF, Olivieri AC (2015) Anthocyanins as markers for the classification of Argentinean wines according to botanical and geographical origin. Chemometric modeling of liquid chromatography-mass spectrometry data. Food Chem 175:174–180

    PubMed  CAS  Google Scholar 

  5. Magdas DA, Guyon F, Feher I, Pinzaru SC (2018) Wine discrimination based on chemometric analysis of untargeted markers using FT-Raman spectroscopy. Food Control 85:385–391

    CAS  Google Scholar 

  6. Geana EI, Popescu R, Costinel D, Dinca OR, Ionete RE, Stefanescu I, Artem V, Bala C (2016) Classification of red wines using suitable markers coupled with multivariate statistic analysis. Food Chem 192:1015–1024

    PubMed  CAS  Google Scholar 

  7. Francioli S, Torrens J, Riu-Aumatell M, López-Tamames E, Buxaderas S (2003) Volatile compounds by SPME-GC as age markers of sparkling wines. Am J Enol Vitic 54:158–162

    CAS  Google Scholar 

  8. Perestrelo R, Barros AS, Câmara JS, Rocha SM (2011) In-depth search focused on furans, lactones, volatile phenols, and acetals as potential age markers of Madeira wines by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry combined with solid phase microextraction. J Agric Food Chem 59(7):3186–3204

    PubMed  CAS  Google Scholar 

  9. Nasi A, Ferranti P, Amato S, Chianese L (2008) Identification of free and bound volatile compounds as typicalness and authenticity markers of non-aromatic grapes and wines through a combined use of mass spectrometric techniques. Food Chem 110(3):762–768

    CAS  Google Scholar 

  10. Fabani MP, Ravera MJA, Wunderlin DA (2013) Markers of typical red wine varieties from the Valley of Tulum (San Juan-Argentina) based on VOCs profile and chemometrics. Food Che 141(2):1055–1062

    CAS  Google Scholar 

  11. Disciplinare di Produzione dei Vini a Denominazione di Origine Controllata e Garantita “Conegliano Valdobbiadene - Prosecco.” pp 1–15

  12. Disciplinare di Produzione della Denominazione di Origine Controllata dei Vini “Prosecco.”

  13. Robinson AL, Boss PK, Solomon PS, Trengove RD, Heymann H, Ebeler SE (2014) Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am J Enol Vitic 65:1–24

    Google Scholar 

  14. D’Onofrio C (2011) Caratterizzazione funzionale della biosintesi degli aromi delle uve durante lo sviluppo dell’acino e controllo della qualità aromatica delle uve. Italus Hortus 18:39–61

    Google Scholar 

  15. Noguerol-Pato R, González-Barreiro C, Cancho-Grande B, Simal-Gándara J (2009) Quantitative determination and characterisation of the main odourants of Mencía monovarietal red wines. Food Chem 117(3):473–484

    CAS  Google Scholar 

  16. Bosch-Fusté J, Riu-Aumatell M, Guadayol JM, Caixach J, López-Tamames E, Buxaderas S (2007) Volatile profiles of sparkling wines obtained by three extraction methods and gas chromatography-mass spectrometry (GC-MS) analysis. Food Chem 105(1):428–435

    Google Scholar 

  17. Cabrita MJ, Costa Freitas AM, Laureano O, Borsa D, Di Stefano R (2007) Aroma compounds in varietal wines from Alentejo, Portugal. J Food Compos Anal 20(5):375–390

    CAS  Google Scholar 

  18. Vilanova M, Sieiro C (2006) Determination of free and bound terpene compounds in Albariño wine. J Food Compos Anal 19(6-7):694–697

    CAS  Google Scholar 

  19. Marais J (2017) Terpenes in the aroma of grapes and wines: a review. S Afr J Enol Vitic 4(2):49–58

    Google Scholar 

  20. Chapman DM, Roby G, Ebeler SE, Guinard JX, Matthews MA (2005) Sensory attributes of Cabernet Sauvignon wines made from vines with different water status. Aust J Grape Wine Res 11:339–347

    CAS  Google Scholar 

  21. Belancic A, Agosin E, Ibacache A, Bordeu E, Baumes R, Razungles A, Bayonove C (1997) Influence of sun exposure on the aromatic composition of chilean Muscat grape cultivars Moscatel de Alejandria and Moscatel rosada. Am J Enol Vitic 48:181–186

    CAS  Google Scholar 

  22. Bureau SM, Razungles AJ, Baumes RL (2000) The aroma of Muscat of Frontignan grapes: effect of the light environment of vine or bunch on volatiles and glycoconjugates. J Sci Food Agric 80:2012–2020

    CAS  Google Scholar 

  23. Noguerol-Pato R, González-Rodríguez RM, González-Barreiro C, Cancho-Grande B, Simal-Gándara J (2011) Influence of tebuconazole residues on the aroma composition of Mencía red wines. Food Chem 124(4):1525–1532

    CAS  Google Scholar 

  24. González Álvarez M, Noguerol-Pato R, González-Barreiro C, Cancho-Grande B, Simal-Gándara J (2012) Changes of the sensorial attributes of white wines with the application of new anti-mildew fungicides under critical agricultural practices. Food Chem 130(1):139–146

    Google Scholar 

  25. González-Rodríguez RM, Noguerol-Pato R, González-Barreiro C, Cancho-Grande B, Simal-Gándara J (2011) Application of new fungicides under good agricultural practices and their effects on the volatile profile of white wines. Food Res Int 44(1):397–403

    Google Scholar 

  26. Pérez-Serradilla JA, de Castro MDL (2008) Role of lees in wine production: a review. Food Chem 111(2):447–456

    PubMed  Google Scholar 

  27. Bueno JE, Peinado RA, Medina M, Moreno J (2006) Effect of a short contact time with lees on volatile composition of Airen and Macabeo wines. Biotechnol Lett 28:1007–1011

    PubMed  CAS  Google Scholar 

  28. Bautista R, Fernández E, Falqué E (2007) Effect of the contact with fermentation-lees or commercial-lees on the volatile composition of white wines. Eur Food Res Technol 224(4):405–413

    CAS  Google Scholar 

  29. Olejar KJ, Fedrizzi B, Kilmartin PA (2015) Influence of harvesting technique and maceration process on aroma and phenolic attributes of Sauvignon blanc wine. Food Chem 183:181–189

    PubMed  CAS  Google Scholar 

  30. Allen T, Herbst-Johnstone M, Girault M, Butler P, Logan G, Jouanneau S, Nicolau L, Kilmartin PA (2011) Influence of grape-harvesting steps on varietal thiol aromas in sauvignon blanc wines. J Agric Food Chem 59(19):10641–10650

    PubMed  CAS  Google Scholar 

  31. Clary C, Steinhauer R, Frisinger J, Peffer T (1990) Evaluation of machine- vs. hand-harvested chardonnay. Am J Enol Vitic 41:176–181

    Google Scholar 

  32. Morris JR (1998) Factors influencing grape juice quality. HortTechnology 8(4):471–478

    Google Scholar 

  33. Carrara M, Catania P, Pipitone F, Vallone M, Salvia M (2007) Assessment of the pedicel detaching and crushing forces of grape berries to determine the optimal mechanical harvesting time. J Agric Eng 3:23–37

    Google Scholar 

  34. Pocock KF, Waters EJ (1998) The effect of mechanical harvesting and transport of grapes, and juice oxidation, on the protein stability of wines. Aust J Grape Wine Res 4(3):136–139

    CAS  Google Scholar 

  35. Pocock KF, Hayasaka Y, Peng Z, Williams PJ, Waters EJ (1998) The effect of mechanical harvesting and long-distance transport on the concentration of haze-forming proteins in grape juice. Aust J Grape Wine Res 4(1):23–29

    CAS  Google Scholar 

  36. Catarino S, Madeira M, Monteiro F, Rocha F, Curvelo-Garcia AS, De Sousa RB (2008) Effect of bentonite characteristics on the elemental composition of wine. J Agric Food Chem 56(1):158–165

    PubMed  CAS  Google Scholar 

  37. Lira E, Salazar FN, Rodríguez-Bencomo JJ, Vincenzi S, Curioni A, López F (2014) Effect of using bentonite during fermentation on protein stabilisation and sensory properties of white wine. Int J Food Sci Technol 49(4):1070–1078

    CAS  Google Scholar 

  38. Molina AM, Swiegers JH, Varela C, Pretorius IS, Agosin E (2007) Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. Appl Microbiol Biotechnol 77:675–687

    PubMed  CAS  Google Scholar 

  39. Fraige K, Pereira-Filho ER, Carrilho E (2014) Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC-DAD-MS and exploratory analysis by principal component analysis. Food Chem 145:395–403

    PubMed  CAS  Google Scholar 

  40. Vaclavik L, Lacina O, Hajslova J, Zweigenbaum J (2011) The use of high performance liquid chromatography-quadrupole time-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety. Anal Chim Acta 685(1):45–51

    PubMed  CAS  Google Scholar 

  41. Villagra E, Santos LS, Vaz BG, Eberlin MN, Felipe Laurie V (2012) Varietal discrimination of Chilean wines by direct injection mass spectrometry analysis combined with multivariate statistics. Food Chem 131(2):692–697

    CAS  Google Scholar 

  42. Hermann G, Jaitz L, Schmölzer C, Koellensperger G, Eder R, Hann S (2012) Analysis of (poly-)phenols in commercially available red wines by means of LC-MS|Analyse von (Poly-)Phenolen in kommerziell erhältlichen Rotweinen via LC-MS. Mitteilungen Klosterneubg 62(1):13–20

    CAS  Google Scholar 

  43. Godelmann R, Fang F, Humpfer E, Schütz B, Bansbach M, Schäfer H, Spraul M (2013) Targeted and nontargeted wine analysis by 1H NMR spectroscopy combined with multivariate statistical analysis. Differentiation of important parameters: grape variety, geographical origin, year of vintage. J Agric Food Chem 61(23):5610–5619

    PubMed  CAS  Google Scholar 

  44. Magdas DA, Cinta Pinzaru S, Guyon F, Feher I, Cozar BI (2018) Application of SERS technique in white wines discrimination. Food Control 92:30–36

    CAS  Google Scholar 

  45. de Almeida MP, Leopold N, Franco R, Pereira E (2019) Expedite SERS fingerprinting of Portuguese white wines using plasmonic silver nanostars. Front Chem 7:368

    PubMed  PubMed Central  Google Scholar 

  46. Bevin CJ, Dambergs RG, Fergusson AJ, Cozzolino D (2008) Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis. Anal Chim Acta 621(1):19–23

    PubMed  CAS  Google Scholar 

  47. Banc R, Loghin F, Miere D, Fetea F, Socaciu C (2014) Romanian wines quality and authenticity using FT-MIR spectroscopy coupled with multivariate data analysis. Not Bot Horti Agrobot Cluj-Napoca 42(2):556–564

    CAS  Google Scholar 

  48. Culbert J, Cozzolino D, Ristic R, Wilkinson K (2015) Classification of sparkling wine style and quality by MIR spectroscopy. Molecules 20(5):8341–8356

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Antoce AO (2012) Influence of maceration enzyme treatment on the colour and volatile profile of two red Romanian wines. Rev Chim 63(9):859–864

    CAS  Google Scholar 

  50. Antoce AO, Cojocaru GA (2015) Effects of blending and co-inoculation on the aromatic profile of wines. Rev Chim 66(10):1567–1571

    CAS  Google Scholar 

  51. Cojocaru GA, Antoce AO (2019) Influence of glutathione and ascorbic acid treatments during vinification of feteasca regala variety and their antioxidant effect on volatile profile. Biosensors 9(4):140

    PubMed Central  CAS  Google Scholar 

  52. Arn H, Acree TE (1998) Flavornet: a database of aroma compounds based on odor potency in natural products. Dev Food Sci 40:27

    Google Scholar 

  53. R. Leardi, C. Melzi, G.P. CAT (chemometric agile tool). https://gruppochemiometria.it/index.php/software. Accessed Mar 2020

  54. Bro R (2014) Principal component analysis. Anal Methods 6:2812–2831

    CAS  Google Scholar 

  55. Ballabio D (2015) A MATLAB toolbox for principal component analysis and unsupervised exploration of data structure. Chemom Intell Lab Syst 149:1–9

    CAS  Google Scholar 

  56. Mujica LE, Rodellar J, Fernández A, Güemes A (2011) Q-statistic and t2-statistic pca-based measures for damage assessment in structures. Struct Health Monit 10:539–553

    Google Scholar 

  57. Ballabio D, Consonni V (2013) Classification tools in chemistry. Part 1: linear models. PLS-DA. Anal Methods 5:3790–3798

    CAS  Google Scholar 

  58. Rottiers H, Tzompa Sosa DA, Van de Vyver L, Hinneh M, Everaert H, De Wever J, Messens K, Dewettinck K (2019) Discrimination of cocoa liquors based on their odor fingerprint: a fast GC electronic nose suitability study. Food Anal Methods 12:475–488

    Google Scholar 

  59. Frauendorfer F, Schieberle P (2006) Identification of the key aroma compounds in cocoa powder based on molecular sensory correlations. J Agric Food Chem 54(15):5521–5529

    PubMed  CAS  Google Scholar 

  60. Fang Y, Qian M (2005) Aroma compounds in Oregon Pinot Noir wine determined by aroma extract dilution analysis (AEDA). Flavour Fragr J 20(1):22–29

    CAS  Google Scholar 

  61. Schieberle P (1991) Primary odorants of pale lager beer. Zeitschrift fǘr Leb Und-Forshcung 193:558–565

    CAS  Google Scholar 

  62. Buratti S, Benedetti S, Scampicchio M, Pangerod EC (2004) Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue. Anal Chim Acta 525(1):133–139

    CAS  Google Scholar 

  63. Schlesier K, Fauhl-Hassek C, Forina M, Cotea V, Kocsi E, Schoula R, van Jaarsveld F, Wittkowski R (2009) Characterization and determination of the geographical origin of wines. Part I: overview. Eur Food Res Technol 230:1

    CAS  Google Scholar 

  64. Antoce AO, Namolosanu I (2011) Rapid and precise discrimination of wines by means of an electronic nose based on gas-chromatography. Rev Chim 62(6):593–595

    CAS  Google Scholar 

  65. (2012) Regolamento di esecuzione (UE) N.203/2012 della commissione dell’8 marzo 2012. Gazz. Uff. dell’Unione Eur

  66. Conlin AK, Martin EB, Morris AJ (2000) Confidence limits for contribution plots. Proc J Chemom 14:725–736

    CAS  Google Scholar 

  67. Riu-Aumatell M, Bosch-Fusté J, López-Tamames E, Buxaderas S (2006) Development of volatile compounds of cava (Spanish sparkling wine) during long ageing time in contact with lees. Food Chem 95(2):237–242

    CAS  Google Scholar 

  68. Santos AO, Wample RL, Sachidhanantham S, Kaye O (2012) Grape quality mapping for vineyard differential harvesting. Braz Arch Biol Technol 55:193–204

    CAS  Google Scholar 

  69. Arfelli G, Sartini E, Bordini F, Caprara C, Pezzi F (2010) Mechanical harvesting optimization and postharvest treatments to improve wine quality. J Int des Sci la Vigne du Vin 44(2):101–115

    CAS  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: FG, DM; methodology: FG; formal analysis and investigation: TF, AZ; writing—original draft preparation: TF, AZ; writing—review and editing: FG, DM; funding acquisition: FG; resources: FG; supervision: DM.

Corresponding author

Correspondence to Dora Melucci.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest associated with this publication.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forleo, T., Zappi, A., Gottardi, F. et al. Rapid discrimination of Italian Prosecco wines by head-space gas-chromatography basing on the volatile profile as a chemometric fingerprint. Eur Food Res Technol 246, 1805–1816 (2020). https://doi.org/10.1007/s00217-020-03534-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03534-8

Keywords

Navigation