Skip to main content
Log in

Grass pea (Lathyrus sativus) flour: microstructure, physico-chemical properties and in vitro digestion

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Flour from grass pea, a legume that is adapted to arid conditions containing high levels of proteins, was characterized according to microstructure, some functional properties and digestibility. Microstructural results showed that grass pea starch granules appeared surrounded by an integral matrix with heterogeneous sizes from 6 to 30 µm. Thermal properties displayed a single endothermic transition corresponding to starch gelatinization transition. The digestibility of starch was 79.6%, expressed as the ratio of non-resistant starch to the total amount of resistant and non-resistant starch. The flour was also relatively rich in phenolic substances possessing antioxidant properties as demonstrated by the 2-diphenyl-1-picrylhydrazyl radical method. Adult and elderly in vitro digestion demonstrated that proteins were easily digested. These findings suggest that this legume is suitable for feeding of a large spectrum of population, being endowed with attractive properties that make it potential enough as functional food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kumar S, Bejiga G, Ahmed S, Nakkoul H, Sarker A (2011) Genetic improvement of grass pea for low neurotoxin (β-ODAP) content. Food Chem Toxicol 49:589–600

    Article  CAS  PubMed  Google Scholar 

  2. Yan ZY, Spencer PS, Li ZX, Liang YM, Wang YF, Wang CY, Li FM (2006) Lathyrus sativus (grass pea) and its neurotoxin ODAP. Phytochemistry 67:107–121

    Article  CAS  PubMed  Google Scholar 

  3. Jiao CJ, Jiang JL, Ke LM, Cheng W, Li FM, Li ZX, Wang CY (2011) Factors affecting β-ODAP content in Lathyrus sativus and their possible physiological mechanisms. Food Chem Toxicol 49:543–549

    Article  CAS  PubMed  Google Scholar 

  4. Rizzello CG, Hernández-Ledesma B, Fernández-Tomé S, Curiel JA, Pinto D, Marzani B, Coda R, Gobbetti M (2015) Italian legumes: effect of sourdough fermentation on lunasin-like polypeptides. Microb Cell Fact 14:168–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mariniello L, Giosafatto CVL, Di Pierro P, Sorrentino A, Porta R (2007) Synthesis and resistance to in vitro proteolysis of transglutaminase-crosslinked phaseolin, the major storage protein from Phaseolus vulgaris. J Agric Food Chem 55:4717–4721

    Article  CAS  PubMed  Google Scholar 

  6. Levi CS, Alvito P, Andrés A, Assunção R, Barberá R et al (2017) Extending in vitro digestion models to specific human populations: perspectives, practical tools and bio-relevant information. Trends Food Sci Technol 60:52–63

    Article  CAS  Google Scholar 

  7. Nagler RM, Hershkovich O (2005) Relationships between age, drugs, oral sensorial complaints and salivary profile. Arch Oral Biol 50:7–16

    Article  PubMed  Google Scholar 

  8. Levi CS, Lesmes U (2014) Bi-compartmental elderly or adult dynamic digestion models applied to interrogate protein digestibility. Food Funct 5:2402–2409

    Article  CAS  PubMed  Google Scholar 

  9. AACC International (1999) approved methods of analysis. 11th edn. Method 44-15.02. Moisture–Air-Oven Methods. Approved November 3, Method 02-52.01. Hydrogen-ion activity (pH)—electrometric method; St. Paul, MN, U.S.A

  10. Romano A, Di Luccia A, Romano R, Sarghini F, Masi P (2015) Microscopic and thermal characteristics of experimental models of starch, gliadins, glutenins and gluten from semolina. Chem Eng Trans 43:163–168

    Google Scholar 

  11. D’Appolonia BL (1977) Rheological and baking studies of legume-wheat flour blends. Cereal Chem 54:53–59

    Google Scholar 

  12. Romano A, Giosafatto CVL, Masi P, Mariniello L (2015) Impact of dehulling on the physico-chemical properties and in vitro protein digestion of common beans (Phaseolus vulgaris L.). Food Funct 6:1345–1351

    Article  CAS  PubMed  Google Scholar 

  13. Romano A, Mackie A, Farina F, Aponte M, Sarghini F, Masi P (2016) Characterisation, in vitro digestibility and expected glycemic index of commercial starches as uncooked ingredients. J Food Sci Technol 53:4126–4134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. AACC International (2002) Approved Methods of Analysis, 11th edn. Method 32-40.01. Resistant Starch in Starch Samples and Plant Materials. Approved October 17, AACC International, St. Paul

    Google Scholar 

  15. Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Fresenius’ J Anal Chem 22:66–382

    Google Scholar 

  16. de Toledo NM, Rocha LC, da Silva AG, Canniatti Brazaca SG (2013) Interaction and digestibility of phaseolin/polyphenol in the common bean. Food Chem 138:776–780

    Article  CAS  PubMed  Google Scholar 

  17. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962

    Article  CAS  PubMed  Google Scholar 

  18. Giosafatto CVL, Di Pierro P, Gunning AP, Mackie A, Porta R, Mariniello L (2014) Trehalose-containing hydrocolloid edible films prepared in the presence of transglutaminase. Biopolymers 101:931–937

    Article  CAS  PubMed  Google Scholar 

  19. Giosafatto CVL, Rigby NM, Wellner N, Ridout M, Husband F, Mackie A (2012) Microbial transglutaminase-mediated modification of ovalbumin. Food Hydrocolloid 26:261–267

    Article  CAS  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  21. Ma Z, Boye JI, Simpson BK, Prasher SO, Monpetit D, Malcolmson L (2011) Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Res Int 44:2534–2544

    Article  CAS  Google Scholar 

  22. Gularte MA, Gómez M, Rosell CM (2012) Impact of legume flours on quality and in vitro digestibility of starch and protein from gluten-free cakes. Food Bioprocess Tech 5:3142–3150

    Article  CAS  Google Scholar 

  23. Wani IA, Sogi DS, Wani AA, Gill BS (2013) Physico-chemical and functional properties of flours from Indian kidney bean (Phaseolus vulgaris L.) cultivars. LWT Food Sci Technol 53:278 – 284

    Article  CAS  Google Scholar 

  24. Doporto MC, Dini C, Mugridge A, Viña SZ, García MA (2012) Physicochemical, thermal and sorption properties of nutritionally differentiated flours and starches. J Food Eng 113:569–576

    Article  CAS  Google Scholar 

  25. Blanchard C, Labouré H, Verel A, Champion D (2012) Study of the impact of wheat flour type, flour particle size and protein content in a cake-like dough: proton mobility and rheological properties assessment. J Cereal Sci 56:691–698

    Article  CAS  Google Scholar 

  26. Rodríguez-Miranda J, Ruiz-López II, Herman-Lara E, Martínez-Sánchez CE, Delgado-Licon E, Vivar-Vera MA (2011) Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT Food Sci Technol 44:673–680

    Article  CAS  Google Scholar 

  27. Siddiq M, Ravi R, Harte JB, Dolan KD (2010) Physical and functional characteristics of selected dry bean (Phaseolus vulgaris L.) flours. LWT Food Sci Technol 4:232–237

    Article  CAS  Google Scholar 

  28. Protonotariou S, Drakos A, Evageliou V, Ritzoulis C, Mandala I (2014) Sieving fractionation and jet mill micronization affect the functional properties of wheat flour. J Food Eng 134:24–29

    Article  CAS  Google Scholar 

  29. Romano A, Masi P, Aversano R, Carucci F, Palomba S, Carputo D (2018) Microstructure and tuber properties of potato varieties with different genetic profiles. Food Chem 239:789–796

    Article  CAS  PubMed  Google Scholar 

  30. Korus J, Witczak M, Juszczak L, Ziobro R (2008) Grass pea (Lathyrus sativus L.) starch as an alternative for cereal starches: Rheological properties and retrogradation susceptibility. J Food Eng 88:528–534

    Article  Google Scholar 

  31. Henshaw FO, McWatters KH, Akingbala JO, Chinnan MS (2003) Thermal properties of cowpea flour: a study by differential scanning calorimetry. Nahrung 47:161–165

    Article  PubMed  Google Scholar 

  32. Rosa MJ, Ferreira RB, Teixeira AR (2000) Storage proteins from Lathyrus sativus seeds. J Agric Food Chem 48:5432–5439

    Article  CAS  PubMed  Google Scholar 

  33. Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72:1293–1307

    Article  CAS  PubMed  Google Scholar 

  34. Desphande SS, Campbell CG (1992) Genotype variation in BOAA, condensed tannins, phenolics and enzyme inhibitors of grass pea (Lathyrus sativus). Can J Plant Sci 72:1037–1047

    Article  Google Scholar 

  35. Devasagayam TP, Tilak JC, Boloor KK, Sane KS, Lele RD (2004) Free radicals and antioxidants in human Health: Current status and future prospects. J Assoc Physicians India 52:795–804

    Google Scholar 

  36. Tamburino R, Guida V, Pacifico S, Rocco M, Zarelli A, Parente A, Di Maro A (2012) Nutritional values and radical scavenging capacities of grass pea (Lathyrus sativus L.) seeds in Valle Agricola district, Italy. Aust J Crop Sci 6:149–156

    CAS  Google Scholar 

  37. Aprianita A, Purwandari U, Watson B, Vasiljevic T (2009) Physico-chemical properties of flours and starches from selected commercial tubers available in Australia. Int Food Res J 16:507–520

    CAS  Google Scholar 

  38. Liu Q, Donner E, Yin Y, Huang RL, Fan MZ (2006) The physicochemical properties and in vitro digestibility of selected cereals, tubers and legumes grown in China. Food Chem 99:470–477

    Article  CAS  Google Scholar 

  39. Pratap Rudra MP, Raghuveer Singh M, Junaid MA, Jyothi P, Rao SLN (2004) Metabolism of dietary ODAP in humans may be responsible for the low incidence of neurolathyrism. Clin Biochem 37:318–322

    Article  CAS  PubMed  Google Scholar 

  40. Ravindranath V (2002) Neurolathyrism: mitochondrial dysfunction in excitotoxicity mediated by l-β-oxalyl aminoalanine. Neurochem Intern 40:505–509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Elisabetta Pucci and Maria Fenderico for their technical collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. L. Giosafatto.

Ethics declarations

Conflict of interest

None.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romano, A., Giosafatto, C.V.L., Al-Asmar, A. et al. Grass pea (Lathyrus sativus) flour: microstructure, physico-chemical properties and in vitro digestion. Eur Food Res Technol 245, 191–198 (2019). https://doi.org/10.1007/s00217-018-3152-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-018-3152-y

Keywords

Navigation