Skip to main content

Advertisement

Log in

Effect of high pressure and heat treatments on IgA immunoreactivity and lysozyme activity in human milk

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Human milk from donor mothers is processed in human milk banks using low-temperature long-time pasteurization to ensure microbial safety. However, this treatment can degrade relevant bioactive components. High-pressure processing of food is a nonthermal treatment that exerts an antimicrobial effect maintaining the nutritional quality of foods. In this study, the effect of high pressure and heat treatments of human milk on denaturation of immunoglobulin A (IgA) and lysozyme activity was determined. Immunoreactive IgA was measured using a sandwich ELISA and lysozyme activity by a Micrococcus lysodeikticus turbidimetric assay. The retention kinetic of IgA in human milk treated by high pressure was studied. The experimental data obtained in the range of 350–650 MPa were well described by the Weibull model. The shape parameter (β) was not affected by the pressure, whereas the scale parameter (α) was affected by the pressure and its behavior was described by an Eyring-type equation. The estimated activation volume (ΔV a) was −25.67 ± 5.32 ml mol−1, and the constant reaction rate at the reference pressure (K p) was 0.022 ± 0.005 min−1. Kinetic parameters obtained allow estimating the pressure-induced denaturation of IgA on the basis of pressure and holding times. A substantial activation of lysozyme activity was obtained after treatment at pressures of 400, 450 and 500 MPa for 30 min. Treatment of human milk at 65 °C for 30 min maintained 43 % of IgA immunoreactivity, whereas lysozyme activity was not affected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. American Academy of Pediatrics (2012) Work group on breastfeeding. Breastfeeding and the use of human milk. Pediatrics 129:827–841

    Article  Google Scholar 

  2. World Health Organisation, WHO (2003) Global strategy for infant and young child feeding, pp 7–9. http://apps.who.int/iris/bitstream/10665/42590/1/9241562218.pdf?ua=1. Accessed 16 Mar 2015

  3. Ballard O, Morrow AL (2013) Pediatr Clin North Am 60:49–74

    Article  Google Scholar 

  4. Zinkernagel RM (2001) N Engl J Med 345:1331–1335

    Article  CAS  Google Scholar 

  5. Mantis NG, Rol N, Corthésy B (2011) Mucosal Immunol 4:603–611

    Article  CAS  Google Scholar 

  6. Lönnerdal B (2003) Am J Clin Nutr 77(suppl):1537S–1543S

    Google Scholar 

  7. Farrell HM, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood HE (2004) J Dairy Sci 87:1641–1674

    Article  CAS  Google Scholar 

  8. Korhonen HJ (2009) In: Young W, Park YW (eds) Bioactive components in milk and dairy products. Wiley, New York

    Google Scholar 

  9. Field CJ (2005) J Nutr 135:1–4

    CAS  Google Scholar 

  10. World Alliance for Breastfeeding Action (WABA) (2015). http://www.waba.org.my/whatwedo/hcp/ihmb.htm. Accessed 16 Mar 2015

  11. Chang JC, Chen CH, Fang LJ, Tsai CR, Chang YC, Wang TM (2013) Pediatr Neonatol 54:360–366

    Article  Google Scholar 

  12. Czank C, Prime DK, Hartmann B, Simmer K, Hartmann PE (2009) Pediatr Res 66:374–379

    Article  Google Scholar 

  13. Ford JE, Law BA, Marshall VME, Reiter B (1977) J Pediatr 90:29–35

    Article  CAS  Google Scholar 

  14. Mayayo C, Montserrat M, Ramos SJ, Martínez-Lorenzo MJ, Calvo M, Sánchez L, Pérez MD (2014) Int Dairy J 39:246–252

    Article  CAS  Google Scholar 

  15. Viazis S, Farkas BE, Allen JC (2007) J Hum Lact 23:253–261

    Article  Google Scholar 

  16. Considine KM, Kelly AL, Fitzgerald GF, Hill C, Sleator RD (2008) FEMS Microbiol Lett 281:1–9

    Article  CAS  Google Scholar 

  17. Viazis S, Farkas BE, Jaykus LA (2008) J Food Prot 71:109–118

    Article  CAS  Google Scholar 

  18. Permanyer M, Castellote C, Ramírez-Santana C, Autí C, Pérez-Cano FJ, Castell M, López-Sabater MC, Franch A (2010) J Dairy Sci 93:877–883

    Article  CAS  Google Scholar 

  19. Contador R, Delgado-Adámez J, Delgado FJ, Cava R, Ramírez R (2013) Int Dairy J 32:1–5

    Article  CAS  Google Scholar 

  20. Sousa SG, Delgadillo I, Saraiva JA (2014) Food Chem 151:79–85

    Article  CAS  Google Scholar 

  21. Sousa SG, Delgadillo I, Saraiva JA (2015) Crit Rev Food Sci Nutr. doi:10.1080/10408398.2012.753402

    Google Scholar 

  22. Evans TJ, Ryley HC, Neale LM, Dodge JA, Lewarne VM (1978) Arch Dis Child 53:239–241

    Article  CAS  Google Scholar 

  23. Martínez-Monteagudo SJ, Saldaña MDA (2014) Food Res Int 62:169–176

    Article  Google Scholar 

  24. Van Boekel M (2002) Int J Food Microbiol 74:139–159

    Article  Google Scholar 

  25. Delgado FJ, Contador R, Álvarez-Barrientos A, Cava R, Delgado-Adámez J, Ramírez R (2013) Innov Food Sci Emerg Technol 19:50–56

    Article  CAS  Google Scholar 

  26. Mazri C, Sánchez L, Ramos SJ, Calvo M, Pérez MD (2012) Eur Food Res Technol 23:813–819

    Article  Google Scholar 

  27. Mazri C, Sánchez L, Ramos SJ, Calvo M, Pérez MD (2012) J Dairy Sci 95:549–557

    Article  CAS  Google Scholar 

  28. Braga LP, Palhares DB (2007) J Pediatr 83:59–63

    Google Scholar 

  29. Koenig Á, de Albuquerque EM, Barbosa SFC, Costa FA (2005) J Hum Lact 21:439–443

    Article  Google Scholar 

  30. Mozhaev VV, Lange R, Kudryashova EV, Balny C (1996) Biotechnol Bioeng 52:320–331

    Article  CAS  Google Scholar 

  31. Shook CM, Shellhammer TH, Schwartz SJ (2001) J Agric Food Chem 49:664–668

    Article  CAS  Google Scholar 

  32. Barrois-Larouze V, Jorieux S, Aubry S, Grimonprez L, Spik G (1984) In: Williams AF, Baaum JD (eds) Human milk banking. Vevey/Raven Press, New York

    Google Scholar 

  33. Björkstén B, Burman LG, De Château P, Fredrikzon B, Gothefors L, Hernell O (1980) Br Med J 281:765–769

    Article  Google Scholar 

  34. Durek T, Torbeev VY, Kent SBH (2007) Proc Natl Acad Sci USA 104:4846–4851

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a CICYT grant (AGL2010-20835) from the Ministerio de Ciencia y Tecnología (Madrid, Spain), by Social European Fund and by Gobierno de Aragón. We thank human milk bank from Zaragoza for providing samples of human milk. We are very grateful to Dr I. Alvalán for his help in the treatment of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María D. Pérez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with Ethics Requirements

The study was approved by the Ethical Committee for Clinical Research of the Government of Aragon (CEICA) and the informed consent was obtained from all donors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayayo, C., Montserrat, M., Ramos, S.J. et al. Effect of high pressure and heat treatments on IgA immunoreactivity and lysozyme activity in human milk. Eur Food Res Technol 242, 891–898 (2016). https://doi.org/10.1007/s00217-015-2595-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-015-2595-7

Keywords

Navigation